forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_hamming_knn.py
29 lines (26 loc) · 1.02 KB
/
bench_hamming_knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import time
import numpy as np
import faiss
if __name__ == "__main__":
faiss.omp_set_num_threads(1)
for d in 4, 8, 16, 13:
nq = 10000
nb = 30000
print('Bits per vector = 8 *', d)
xq = faiss.randint((nq, d // 4), seed=1234, vmax=256**4).view('uint8')
xb = faiss.randint((nb, d // 4), seed=1234, vmax=256**4).view('uint8')
for variant in "hc", "mc":
print(f"{variant=:}", end="\t")
for k in 1, 4, 16, 64, 256:
times = []
for _run in range(5):
t0 = time.time()
D, I = faiss.knn_hamming(xq, xb, k, variant=variant)
t1 = time.time()
times.append(t1 - t0)
print(f'| {k=:} t={np.mean(times):.3f} s ± {np.std(times):.3f} ', flush=True, end="")
print()