forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_ivfflat_raft.py
193 lines (163 loc) · 8.08 KB
/
bench_ivfflat_raft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Copyright (c) 2023, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import faiss
import time
import argparse
import rmm
######################################################
# Command-line parsing
######################################################
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('benchmarking options')
aa('--bm_train', default=False, action='store_true',
help='whether to benchmark train operation on GPU index')
aa('--bm_add', default=False, action='store_true',
help='whether to benchmark add operation on GPU index')
aa('--bm_search', default=True,
help='whether to benchmark search operation on GPU index')
aa('--raft_only', default=False, action='store_true',
help='whether to only produce RAFT enabled benchmarks')
group = parser.add_argument_group('IVF options')
aa('--n_centroids', default=256, type=int,
help="number of IVF centroids")
group = parser.add_argument_group('searching')
aa('--k', default=100, type=int, help='nb of nearest neighbors')
aa('--nprobe', default=50, help='nb of IVF lists to probe')
args = parser.parse_args()
print("args:", args)
rs = np.random.RandomState(123)
res = faiss.StandardGpuResources()
# Use an RMM pool memory resource for device allocations
mr = rmm.mr.PoolMemoryResource(rmm.mr.CudaMemoryResource())
rmm.mr.set_current_device_resource(mr)
def bench_train_milliseconds(index, trainVecs, use_raft):
co = faiss.GpuMultipleClonerOptions()
co.use_raft = use_raft
index_gpu = faiss.index_cpu_to_gpu(res, 0, index, co)
t0 = time.time()
index_gpu.train(trainVecs)
return 1000*(time.time() - t0)
if args.bm_train:
print("=" * 40)
print("GPU Train Benchmarks")
print("=" * 40)
trainset_sizes = [5000, 10000, 100000, 1000000, 5000000]
dataset_dims = [128, 256, 1024]
for n_rows in trainset_sizes:
for n_cols in dataset_dims:
index = faiss.index_factory(n_cols, "IVF{},Flat".format(args.n_centroids))
trainVecs = rs.rand(n_rows, n_cols).astype('float32')
raft_gpu_train_time = bench_train_milliseconds(
index, trainVecs, True)
if args.raft_only:
print("Method: IVFFlat, Operation: TRAIN, dim: %d, n_centroids %d, numTrain: %d, RAFT enabled GPU train time: %.3f milliseconds" % (
n_cols, args.n_centroids, n_rows, raft_gpu_train_time))
else:
classical_gpu_train_time = bench_train_milliseconds(
index, trainVecs, False)
print("Method: IVFFlat, Operation: TRAIN, dim: %d, n_centroids %d, numTrain: %d, classical GPU train time: %.3f milliseconds, RAFT enabled GPU train time: %.3f milliseconds" % (
n_cols, args.n_centroids, n_rows, classical_gpu_train_time, raft_gpu_train_time))
def bench_add_milliseconds(index, addVecs, use_raft):
co = faiss.GpuMultipleClonerOptions()
co.use_raft = use_raft
index_gpu = faiss.index_cpu_to_gpu(res, 0, index, co)
index_gpu.copyFrom(index)
t0 = time.time()
index_gpu.add(addVecs)
return 1000*(time.time() - t0)
if args.bm_add:
print("=" * 40)
print("GPU Add Benchmarks")
print("=" * 40)
addset_sizes = [5000, 10000, 100000, 1000000]
dataset_dims = [128, 256, 1024]
n_train = 10000
trainVecs = rs.rand(n_train, n_cols).astype('float32')
index = faiss.index_factory(
n_cols, "IVF" + str(args.n_centroids) + ",Flat")
index.train(trainVecs)
for n_rows in addset_sizes:
for n_cols in dataset_dims:
addVecs = rs.rand(n_rows, n_cols).astype('float32')
raft_gpu_add_time = bench_add_milliseconds(index, addVecs, True)
if args.raft_only:
print("Method: IVFFlat, Operation: ADD, dim: %d, n_centroids %d, numAdd: %d, RAFT enabled GPU add time: %.3f milliseconds" % (
n_train, n_rows, n_cols, args.n_centroids, raft_gpu_add_time))
else:
classical_gpu_add_time = bench_add_milliseconds(
index, addVecs, False)
print("Method: IVFFlat, Operation: ADD, dim: %d, n_centroids %d, numAdd: %d, classical GPU add time: %.3f milliseconds, RAFT enabled GPU add time: %.3f milliseconds" % (
n_train, n_rows, n_cols, args.n_centroids, classical_gpu_add_time, raft_gpu_add_time))
def bench_search_milliseconds(index, addVecs, queryVecs, nprobe, k, use_raft):
co = faiss.GpuMultipleClonerOptions()
co.use_raft = use_raft
index_gpu = faiss.index_cpu_to_gpu(res, 0, index, co)
index_gpu.copyFrom(index)
index_gpu.add(addVecs)
index_gpu.nprobe = nprobe
t0 = time.time()
index_gpu.search(queryVecs, k)
return 1000*(time.time() - t0)
if args.bm_search:
print("=" * 40)
print("GPU Search Benchmarks")
print("=" * 40)
queryset_sizes = [5000, 10000, 100000, 500000]
n_train = 10000
n_add = 100000
search_bm_dims = [8, 16, 32]
for n_cols in search_bm_dims:
index = faiss.index_factory(n_cols, "IVF{},Flat".format(args.n_centroids))
trainVecs = rs.rand(n_train, n_cols).astype('float32')
index.train(trainVecs)
addVecs = rs.rand(n_add, n_cols).astype('float32')
for n_rows in queryset_sizes:
queryVecs = rs.rand(n_rows, n_cols).astype('float32')
raft_gpu_search_time = bench_search_milliseconds(
index, addVecs, queryVecs, args.nprobe, args.k, True)
if args.raft_only:
print("Method: IVFFlat, Operation: SEARCH, dim: %d, n_centroids: %d, numVecs: %d, numQuery: %d, nprobe: %d, k: %d, RAFT enabled GPU search time: %.3f milliseconds" % (
n_cols, args.n_centroids, n_add, n_rows, args.nprobe, args.k, raft_gpu_search_time))
else:
classical_gpu_search_time = bench_search_milliseconds(
index, addVecs, queryVecs, args.nprobe, args.k, False)
print("Method: IVFFlat, Operation: SEARCH, dim: %d, n_centroids: %d, numVecs: %d, numQuery: %d, nprobe: %d, k: %d, classical GPU search time: %.3f milliseconds, RAFT enabled GPU search time: %.3f milliseconds" % (
n_cols, args.n_centroids, n_add, n_rows, args.nprobe, args.k, classical_gpu_search_time, raft_gpu_search_time))
print("=" * 40)
print("Large RAFT Enabled Benchmarks")
print("=" * 40)
# Avoid classical GPU Benchmarks for large datasets because of OOM for more than 500000 queries and/or large dims as well as for large k
queryset_sizes = [100000, 500000, 1000000]
large_search_bm_dims = [128, 256, 1024]
for n_cols in large_search_bm_dims:
trainVecs = rs.rand(n_train, n_cols).astype('float32')
index = faiss.index_factory(
n_cols, "IVF" + str(args.n_centroids) + ",Flat")
index.train(trainVecs)
addVecs = rs.rand(n_add, n_cols).astype('float32')
for n_rows in queryset_sizes:
queryVecs = rs.rand(n_rows, n_cols).astype('float32')
raft_gpu_search_time = bench_search_milliseconds(
index, addVecs, queryVecs, args.nprobe, args.k, True)
print("Method: IVFFlat, Operation: SEARCH, numTrain: %d, dim: %d, n_centroids: %d, numVecs: %d, numQuery: %d, nprobe: %d, k: %d, RAFT enabled GPU search time: %.3f milliseconds" % (
n_cols, args.n_centroids, n_add, n_rows, args.nprobe, args.k, raft_gpu_search_time))