forked from MasteringOpenCV/code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiCameraPnP.cpp
executable file
·542 lines (469 loc) · 19.5 KB
/
MultiCameraPnP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*****************************************************************************
* ExploringSfMWithOpenCV
******************************************************************************
* by Roy Shilkrot, 5th Dec 2012
* http://www.morethantechnical.com/
******************************************************************************
* Ch4 of the book "Mastering OpenCV with Practical Computer Vision Projects"
* Copyright Packt Publishing 2012.
* http://www.packtpub.com/cool-projects-with-opencv/book
*****************************************************************************/
#include "MultiCameraPnP.h"
#include "BundleAdjuster.h"
using namespace std;
#include <opencv2/gpu/gpu.hpp>
#include <opencv2/calib3d/calib3d.hpp>
bool sort_by_first(pair<int,pair<int,int> > a, pair<int,pair<int,int> > b) { return a.first < b.first; }
//Following Snavely07 4.2 - find how many inliers are in the Homography between 2 views
int MultiCameraPnP::FindHomographyInliers2Views(int vi, int vj)
{
vector<cv::KeyPoint> ikpts,jkpts; vector<cv::Point2f> ipts,jpts;
GetAlignedPointsFromMatch(imgpts[vi],imgpts[vj],matches_matrix[make_pair(vi,vj)],ikpts,jkpts);
KeyPointsToPoints(ikpts,ipts); KeyPointsToPoints(jkpts,jpts);
double minVal,maxVal; cv::minMaxIdx(ipts,&minVal,&maxVal); //TODO flatten point2d?? or it takes max of width and height
vector<uchar> status;
cv::Mat H = cv::findHomography(ipts,jpts,status,CV_RANSAC, 0.004 * maxVal); //threshold from Snavely07
return cv::countNonZero(status); //number of inliers
}
/**
* Get an initial 3D point cloud from 2 views only
*/
void MultiCameraPnP::GetBaseLineTriangulation() {
std::cout << "=========================== Baseline triangulation ===========================\n";
cv::Matx34d P(1,0,0,0,
0,1,0,0,
0,0,1,0),
P1(1,0,0,0,
0,1,0,0,
0,0,1,0);
std::vector<CloudPoint> tmp_pcloud;
//sort pairwise matches to find the lowest Homography inliers [Snavely07 4.2]
cout << "Find highest match...";
list<pair<int,pair<int,int> > > matches_sizes;
//TODO: parallelize!
for(std::map<std::pair<int,int> ,std::vector<cv::DMatch> >::iterator i = matches_matrix.begin(); i != matches_matrix.end(); ++i) {
if((*i).second.size() < 100)
matches_sizes.push_back(make_pair(100,(*i).first));
else {
int Hinliers = FindHomographyInliers2Views((*i).first.first,(*i).first.second);
int percent = (int)(((double)Hinliers) / ((double)(*i).second.size()) * 100.0);
cout << "[" << (*i).first.first << "," << (*i).first.second << " = "<<percent<<"] ";
matches_sizes.push_back(make_pair((int)percent,(*i).first));
}
}
cout << endl;
matches_sizes.sort(sort_by_first);
//Reconstruct from two views
bool goodF = false;
int highest_pair = 0;
m_first_view = m_second_view = 0;
//reverse iterate by number of matches
for(list<pair<int,pair<int,int> > >::iterator highest_pair = matches_sizes.begin();
highest_pair != matches_sizes.end() && !goodF;
++highest_pair)
{
m_second_view = (*highest_pair).second.second;
m_first_view = (*highest_pair).second.first;
std::cout << " -------- " << imgs_names[m_first_view] << " and " << imgs_names[m_second_view] << " -------- " <<std::endl;
//what if reconstrcution of first two views is bad? fallback to another pair
//See if the Fundamental Matrix between these two views is good
goodF = FindCameraMatrices(K, Kinv, distortion_coeff,
imgpts[m_first_view],
imgpts[m_second_view],
imgpts_good[m_first_view],
imgpts_good[m_second_view],
P,
P1,
matches_matrix[std::make_pair(m_first_view,m_second_view)],
tmp_pcloud
#ifdef __SFM__DEBUG__
,imgs[m_first_view],imgs[m_second_view]
#endif
);
if (goodF) {
vector<CloudPoint> new_triangulated;
vector<int> add_to_cloud;
Pmats[m_first_view] = P;
Pmats[m_second_view] = P1;
bool good_triangulation = TriangulatePointsBetweenViews(m_second_view,m_first_view,new_triangulated,add_to_cloud);
if(!good_triangulation || cv::countNonZero(add_to_cloud) < 10) {
std::cout << "triangulation failed" << std::endl;
goodF = false;
Pmats[m_first_view] = 0;
Pmats[m_second_view] = 0;
m_second_view++;
} else {
std::cout << "before triangulation: " << pcloud.size();
for (unsigned int j=0; j<add_to_cloud.size(); j++) {
if(add_to_cloud[j] == 1)
pcloud.push_back(new_triangulated[j]);
}
std::cout << " after " << pcloud.size() << std::endl;
}
}
}
if (!goodF) {
cerr << "Cannot find a good pair of images to obtain a baseline triangulation" << endl;
exit(0);
}
cout << "Taking baseline from " << imgs_names[m_first_view] << " and " << imgs_names[m_second_view] << endl;
// double reproj_error;
// {
// std::vector<cv::KeyPoint> pt_set1,pt_set2;
//
// std::vector<cv::DMatch> matches = matches_matrix[std::make_pair(m_first_view,m_second_view)];
//
// GetAlignedPointsFromMatch(imgpts[m_first_view],imgpts[m_second_view],matches,pt_set1,pt_set2);
//
// pcloud.clear();
// reproj_error = TriangulatePoints(pt_set1,
// pt_set2,
// Kinv,
// distortion_coeff,
// Pmats[m_first_view],
// Pmats[m_second_view],
// pcloud,
// correspImg1Pt);
//
// for (unsigned int i=0; i<pcloud.size(); i++) {
// pcloud[i].imgpt_for_img = std::vector<int>(imgs.size(),-1);
// //matches[i] corresponds to pointcloud[i]
// pcloud[i].imgpt_for_img[m_first_view] = matches[i].queryIdx;
// pcloud[i].imgpt_for_img[m_second_view] = matches[i].trainIdx;
// }
// }
// std::cout << "triangulation reproj error " << reproj_error << std::endl;
}
void MultiCameraPnP::Find2D3DCorrespondences(int working_view,
std::vector<cv::Point3f>& ppcloud,
std::vector<cv::Point2f>& imgPoints)
{
ppcloud.clear(); imgPoints.clear();
vector<int> pcloud_status(pcloud.size(),0);
for (set<int>::iterator done_view = good_views.begin(); done_view != good_views.end(); ++done_view)
{
int old_view = *done_view;
//check for matches_from_old_to_working between i'th frame and <old_view>'th frame (and thus the current cloud)
std::vector<cv::DMatch> matches_from_old_to_working = matches_matrix[std::make_pair(old_view,working_view)];
for (unsigned int match_from_old_view=0; match_from_old_view < matches_from_old_to_working.size(); match_from_old_view++) {
// the index of the matching point in <old_view>
int idx_in_old_view = matches_from_old_to_working[match_from_old_view].queryIdx;
//scan the existing cloud (pcloud) to see if this point from <old_view> exists
for (unsigned int pcldp=0; pcldp<pcloud.size(); pcldp++) {
// see if corresponding point was found in this point
if (idx_in_old_view == pcloud[pcldp].imgpt_for_img[old_view] && pcloud_status[pcldp] == 0) //prevent duplicates
{
//3d point in cloud
ppcloud.push_back(pcloud[pcldp].pt);
//2d point in image i
imgPoints.push_back(imgpts[working_view][matches_from_old_to_working[match_from_old_view].trainIdx].pt);
pcloud_status[pcldp] = 1;
break;
}
}
}
}
cout << "found " << ppcloud.size() << " 3d-2d point correspondences"<<endl;
}
bool MultiCameraPnP::FindPoseEstimation(
int working_view,
cv::Mat_<double>& rvec,
cv::Mat_<double>& t,
cv::Mat_<double>& R,
std::vector<cv::Point3f> ppcloud,
std::vector<cv::Point2f> imgPoints
)
{
if(ppcloud.size() <= 7 || imgPoints.size() <= 7 || ppcloud.size() != imgPoints.size()) {
//something went wrong aligning 3D to 2D points..
cerr << "couldn't find [enough] corresponding cloud points... (only " << ppcloud.size() << ")" <<endl;
return false;
}
vector<int> inliers;
if(!use_gpu) {
//use CPU
double minVal,maxVal; cv::minMaxIdx(imgPoints,&minVal,&maxVal);
CV_PROFILE("solvePnPRansac",cv::solvePnPRansac(ppcloud, imgPoints, K, distortion_coeff, rvec, t, true, 1000, 0.006 * maxVal, 0.25 * (double)(imgPoints.size()), inliers, CV_EPNP);)
//CV_PROFILE("solvePnP",cv::solvePnP(ppcloud, imgPoints, K, distortion_coeff, rvec, t, true, CV_EPNP);)
} else {
//use GPU ransac
//make sure datatstructures are cv::gpu compatible
cv::Mat ppcloud_m(ppcloud); ppcloud_m = ppcloud_m.t();
cv::Mat imgPoints_m(imgPoints); imgPoints_m = imgPoints_m.t();
cv::Mat rvec_,t_;
cv::gpu::solvePnPRansac(ppcloud_m,imgPoints_m,K_32f,distcoeff_32f,rvec_,t_,false);
rvec_.convertTo(rvec,CV_64FC1);
t_.convertTo(t,CV_64FC1);
}
vector<cv::Point2f> projected3D;
cv::projectPoints(ppcloud, rvec, t, K, distortion_coeff, projected3D);
if(inliers.size()==0) { //get inliers
for(int i=0;i<projected3D.size();i++) {
if(norm(projected3D[i]-imgPoints[i]) < 10.0)
inliers.push_back(i);
}
}
#if 0
//display reprojected points and matches
cv::Mat reprojected; imgs_orig[working_view].copyTo(reprojected);
for(int ppt=0;ppt<imgPoints.size();ppt++) {
cv::line(reprojected,imgPoints[ppt],projected3D[ppt],cv::Scalar(0,0,255),1);
}
for (int ppt=0; ppt<inliers.size(); ppt++) {
cv::line(reprojected,imgPoints[inliers[ppt]],projected3D[inliers[ppt]],cv::Scalar(0,0,255),1);
}
for(int ppt=0;ppt<imgPoints.size();ppt++) {
cv::circle(reprojected, imgPoints[ppt], 2, cv::Scalar(255,0,0), CV_FILLED);
cv::circle(reprojected, projected3D[ppt], 2, cv::Scalar(0,255,0), CV_FILLED);
}
for (int ppt=0; ppt<inliers.size(); ppt++) {
cv::circle(reprojected, imgPoints[inliers[ppt]], 2, cv::Scalar(255,255,0), CV_FILLED);
}
stringstream ss; ss << "inliers " << inliers.size() << " / " << projected3D.size();
putText(reprojected, ss.str(), cv::Point(5,20), CV_FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0,255,255), 2);
cv::imshow("__tmp", reprojected);
cv::waitKey(0);
cv::destroyWindow("__tmp");
#endif
//cv::Rodrigues(rvec, R);
//visualizerShowCamera(R,t,0,255,0,0.1);
if(inliers.size() < (double)(imgPoints.size())/5.0) {
cerr << "not enough inliers to consider a good pose ("<<inliers.size()<<"/"<<imgPoints.size()<<")"<< endl;
return false;
}
if(cv::norm(t) > 200.0) {
// this is bad...
cerr << "estimated camera movement is too big, skip this camera\r\n";
return false;
}
cv::Rodrigues(rvec, R);
if(!CheckCoherentRotation(R)) {
cerr << "rotation is incoherent. we should try a different base view..." << endl;
return false;
}
std::cout << "found t = " << t << "\nR = \n"<<R<<std::endl;
return true;
}
bool MultiCameraPnP::TriangulatePointsBetweenViews(
int working_view,
int older_view,
vector<struct CloudPoint>& new_triangulated,
vector<int>& add_to_cloud
)
{
cout << " Triangulate " << imgs_names[working_view] << " and " << imgs_names[older_view] << endl;
//get the left camera matrix
//TODO: potential bug - the P mat for <view> may not exist? or does it...
cv::Matx34d P = Pmats[older_view];
cv::Matx34d P1 = Pmats[working_view];
std::vector<cv::KeyPoint> pt_set1,pt_set2;
std::vector<cv::DMatch> matches = matches_matrix[std::make_pair(older_view,working_view)];
GetAlignedPointsFromMatch(imgpts[older_view],imgpts[working_view],matches,pt_set1,pt_set2);
//adding more triangulated points to general cloud
double reproj_error = TriangulatePoints(pt_set1, pt_set2, K, Kinv, distortion_coeff, P, P1, new_triangulated, correspImg1Pt);
std::cout << "triangulation reproj error " << reproj_error << std::endl;
vector<uchar> trig_status;
if(!TestTriangulation(new_triangulated, P, trig_status) || !TestTriangulation(new_triangulated, P1, trig_status)) {
cerr << "Triangulation did not succeed" << endl;
return false;
}
// if(reproj_error > 20.0) {
// // somethign went awry, delete those triangulated points
// // pcloud.resize(start_i);
// cerr << "reprojection error too high, don't include these points."<<endl;
// return false;
// }
//filter out outlier points with high reprojection
vector<double> reprj_errors;
for(int i=0;i<new_triangulated.size();i++) { reprj_errors.push_back(new_triangulated[i].reprojection_error); }
std::sort(reprj_errors.begin(),reprj_errors.end());
//get the 80% precentile
double reprj_err_cutoff = reprj_errors[4 * reprj_errors.size() / 5] * 2.4; //threshold from Snavely07 4.2
vector<CloudPoint> new_triangulated_filtered;
std::vector<cv::DMatch> new_matches;
for(int i=0;i<new_triangulated.size();i++) {
if(trig_status[i] == 0)
continue; //point was not in front of camera
if(new_triangulated[i].reprojection_error > 16.0) {
continue; //reject point
}
if(new_triangulated[i].reprojection_error < 4.0 ||
new_triangulated[i].reprojection_error < reprj_err_cutoff)
{
new_triangulated_filtered.push_back(new_triangulated[i]);
new_matches.push_back(matches[i]);
}
else
{
continue;
}
}
cout << "filtered out " << (new_triangulated.size() - new_triangulated_filtered.size()) << " high-error points" << endl;
//all points filtered?
if(new_triangulated_filtered.size() <= 0) return false;
new_triangulated = new_triangulated_filtered;
matches = new_matches;
matches_matrix[std::make_pair(older_view,working_view)] = new_matches; //just to make sure, remove if unneccesary
matches_matrix[std::make_pair(working_view,older_view)] = FlipMatches(new_matches);
add_to_cloud.clear();
add_to_cloud.resize(new_triangulated.size(),1);
int found_other_views_count = 0;
int num_views = imgs.size();
//scan new triangulated points, if they were already triangulated before - strengthen cloud
//#pragma omp parallel for num_threads(1)
for (int j = 0; j<new_triangulated.size(); j++) {
new_triangulated[j].imgpt_for_img = std::vector<int>(imgs.size(),-1);
//matches[j] corresponds to new_triangulated[j]
//matches[j].queryIdx = point in <older_view>
//matches[j].trainIdx = point in <working_view>
new_triangulated[j].imgpt_for_img[older_view] = matches[j].queryIdx; //2D reference to <older_view>
new_triangulated[j].imgpt_for_img[working_view] = matches[j].trainIdx; //2D reference to <working_view>
bool found_in_other_view = false;
for (unsigned int view_ = 0; view_ < num_views; view_++) {
if(view_ != older_view) {
//Look for points in <view_> that match to points in <working_view>
std::vector<cv::DMatch> submatches = matches_matrix[std::make_pair(view_,working_view)];
for (unsigned int ii = 0; ii < submatches.size(); ii++) {
if (submatches[ii].trainIdx == matches[j].trainIdx &&
!found_in_other_view)
{
//Point was already found in <view_> - strengthen it in the known cloud, if it exists there
//cout << "2d pt " << submatches[ii].queryIdx << " in img " << view_ << " matched 2d pt " << submatches[ii].trainIdx << " in img " << i << endl;
for (unsigned int pt3d=0; pt3d<pcloud.size(); pt3d++) {
if (pcloud[pt3d].imgpt_for_img[view_] == submatches[ii].queryIdx)
{
//pcloud[pt3d] - a point that has 2d reference in <view_>
//cout << "3d point "<<pt3d<<" in cloud, referenced 2d pt " << submatches[ii].queryIdx << " in view " << view_ << endl;
#pragma omp critical
{
pcloud[pt3d].imgpt_for_img[working_view] = matches[j].trainIdx;
pcloud[pt3d].imgpt_for_img[older_view] = matches[j].queryIdx;
found_in_other_view = true;
add_to_cloud[j] = 0;
}
}
}
}
}
}
}
#pragma omp critical
{
if (found_in_other_view) {
found_other_views_count++;
} else {
add_to_cloud[j] = 1;
}
}
}
std::cout << found_other_views_count << "/" << new_triangulated.size() << " points were found in other views, adding " << cv::countNonZero(add_to_cloud) << " new\n";
return true;
}
void MultiCameraPnP::AdjustCurrentBundle() {
cout << "======================== Bundle Adjustment ==========================\n";
pointcloud_beforeBA = pcloud;
GetRGBForPointCloud(pointcloud_beforeBA,pointCloudRGB_beforeBA);
cv::Mat _cam_matrix = K;
BundleAdjuster BA;
BA.adjustBundle(pcloud,_cam_matrix,imgpts,Pmats);
K = cam_matrix;
Kinv = K.inv();
cout << "use new K " << endl << K << endl;
GetRGBForPointCloud(pcloud,pointCloudRGB);
}
void MultiCameraPnP::PruneMatchesBasedOnF() {
//prune the match between <_i> and all views using the Fundamental matrix to prune
//#pragma omp parallel for
for (int _i=0; _i < imgs.size() - 1; _i++)
{
for (unsigned int _j=_i+1; _j < imgs.size(); _j++) {
int older_view = _i, working_view = _j;
GetFundamentalMat( imgpts[older_view],
imgpts[working_view],
imgpts_good[older_view],
imgpts_good[working_view],
matches_matrix[std::make_pair(older_view,working_view)]
#ifdef __SFM__DEBUG__
,imgs_orig[older_view],imgs_orig[working_view]
#endif
);
//update flip matches as well
#pragma omp critical
matches_matrix[std::make_pair(working_view,older_view)] = FlipMatches(matches_matrix[std::make_pair(older_view,working_view)]);
}
}
}
void MultiCameraPnP::RecoverDepthFromImages() {
if(!features_matched)
OnlyMatchFeatures();
std::cout << "======================================================================\n";
std::cout << "======================== Depth Recovery Start ========================\n";
std::cout << "======================================================================\n";
PruneMatchesBasedOnF();
GetBaseLineTriangulation();
AdjustCurrentBundle();
update(); //notify listeners
cv::Matx34d P1 = Pmats[m_second_view];
cv::Mat_<double> t = (cv::Mat_<double>(1,3) << P1(0,3), P1(1,3), P1(2,3));
cv::Mat_<double> R = (cv::Mat_<double>(3,3) << P1(0,0), P1(0,1), P1(0,2),
P1(1,0), P1(1,1), P1(1,2),
P1(2,0), P1(2,1), P1(2,2));
cv::Mat_<double> rvec(1,3); Rodrigues(R, rvec);
done_views.insert(m_first_view);
done_views.insert(m_second_view);
good_views.insert(m_first_view);
good_views.insert(m_second_view);
//loop images to incrementally recover more cameras
//for (unsigned int i=0; i < imgs.size(); i++)
while (done_views.size() != imgs.size())
{
//find image with highest 2d-3d correspondance [Snavely07 4.2]
unsigned int max_2d3d_view = -1, max_2d3d_count = 0;
vector<cv::Point3f> max_3d; vector<cv::Point2f> max_2d;
for (unsigned int _i=0; _i < imgs.size(); _i++) {
if(done_views.find(_i) != done_views.end()) continue; //already done with this view
vector<cv::Point3f> tmp3d; vector<cv::Point2f> tmp2d;
cout << imgs_names[_i] << ": ";
Find2D3DCorrespondences(_i,tmp3d,tmp2d);
if(tmp3d.size() > max_2d3d_count) {
max_2d3d_count = tmp3d.size();
max_2d3d_view = _i;
max_3d = tmp3d; max_2d = tmp2d;
}
}
int i = max_2d3d_view; //highest 2d3d matching view
std::cout << "-------------------------- " << imgs_names[i] << " --------------------------\n";
done_views.insert(i); // don't repeat it for now
bool pose_estimated = FindPoseEstimation(i,rvec,t,R,max_3d,max_2d);
if(!pose_estimated)
continue;
//store estimated pose
Pmats[i] = cv::Matx34d (R(0,0),R(0,1),R(0,2),t(0),
R(1,0),R(1,1),R(1,2),t(1),
R(2,0),R(2,1),R(2,2),t(2));
// start triangulating with previous GOOD views
for (set<int>::iterator done_view = good_views.begin(); done_view != good_views.end(); ++done_view)
{
int view = *done_view;
if( view == i ) continue; //skip current...
cout << " -> " << imgs_names[view] << endl;
vector<CloudPoint> new_triangulated;
vector<int> add_to_cloud;
bool good_triangulation = TriangulatePointsBetweenViews(i,view,new_triangulated,add_to_cloud);
if(!good_triangulation) continue;
std::cout << "before triangulation: " << pcloud.size();
for (int j=0; j<add_to_cloud.size(); j++) {
if(add_to_cloud[j] == 1)
pcloud.push_back(new_triangulated[j]);
}
std::cout << " after " << pcloud.size() << std::endl;
//break;
}
good_views.insert(i);
AdjustCurrentBundle();
update();
}
cout << "======================================================================\n";
cout << "========================= Depth Recovery DONE ========================\n";
cout << "======================================================================\n";
}