forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLocation.cpp
553 lines (493 loc) · 16.5 KB
/
Location.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
/*
* Location.cpp
*/
#include "Location.h"
#ifndef HAL_BOOTLOADER_BUILD
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Terrain/AP_Terrain.h>
/// constructors
Location::Location()
{
zero();
}
const Location definitely_zero{};
bool Location::is_zero(void) const
{
return !memcmp(this, &definitely_zero, sizeof(*this));
}
void Location::zero(void)
{
memset(this, 0, sizeof(*this));
}
// Construct location using position (NEU) from ekf_origin for the given altitude frame
Location::Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame)
{
// make sure we know what size the Location object is:
ASSERT_STORAGE_SIZE(Location, 16);
zero();
lat = latitude;
lng = longitude;
set_alt_cm(alt_in_cm, frame);
}
#if AP_AHRS_ENABLED
Location::Location(const Vector3f &ekf_offset_neu, AltFrame frame)
{
zero();
// store alt and alt frame
set_alt_cm(ekf_offset_neu.z, frame);
// calculate lat, lon
Location ekf_origin;
if (AP::ahrs().get_origin(ekf_origin)) {
lat = ekf_origin.lat;
lng = ekf_origin.lng;
offset(ekf_offset_neu.x * 0.01, ekf_offset_neu.y * 0.01);
}
}
#endif // AP_AHRS_ENABLED
void Location::set_alt_cm(int32_t alt_cm, AltFrame frame)
{
alt = alt_cm;
relative_alt = false;
terrain_alt = false;
origin_alt = false;
switch (frame) {
case AltFrame::ABSOLUTE:
// do nothing
break;
case AltFrame::ABOVE_HOME:
relative_alt = true;
break;
case AltFrame::ABOVE_ORIGIN:
origin_alt = true;
break;
case AltFrame::ABOVE_TERRAIN:
// we mark it as a relative altitude, as it doesn't have
// home alt added
relative_alt = true;
terrain_alt = true;
break;
}
}
// converts altitude to new frame
bool Location::change_alt_frame(AltFrame desired_frame)
{
int32_t new_alt_cm;
if (!get_alt_cm(desired_frame, new_alt_cm)) {
return false;
}
set_alt_cm(new_alt_cm, desired_frame);
return true;
}
// get altitude frame
Location::AltFrame Location::get_alt_frame() const
{
if (terrain_alt) {
return AltFrame::ABOVE_TERRAIN;
}
if (origin_alt) {
return AltFrame::ABOVE_ORIGIN;
}
if (relative_alt) {
return AltFrame::ABOVE_HOME;
}
return AltFrame::ABSOLUTE;
}
/// get altitude in desired frame
bool Location::get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (!initialised()) {
AP_HAL::panic("Should not be called on invalid location: Location cannot be (0, 0, 0)");
}
#endif
Location::AltFrame frame = get_alt_frame();
// shortcut if desired and underlying frame are the same
if (desired_frame == frame) {
ret_alt_cm = alt;
return true;
}
// check for terrain altitude
float alt_terr_cm = 0;
if (frame == AltFrame::ABOVE_TERRAIN || desired_frame == AltFrame::ABOVE_TERRAIN) {
#if AP_TERRAIN_AVAILABLE
AP_Terrain *terrain = AP::terrain();
if (terrain == nullptr) {
return false;
}
if (!terrain->height_amsl(*this, alt_terr_cm)) {
return false;
}
// convert terrain alt to cm
alt_terr_cm *= 100.0f;
#else
return false;
#endif
}
// convert alt to absolute
int32_t alt_abs = 0;
switch (frame) {
case AltFrame::ABSOLUTE:
alt_abs = alt;
break;
case AltFrame::ABOVE_HOME:
#if AP_AHRS_ENABLED
if (!AP::ahrs().home_is_set()) {
return false;
}
alt_abs = alt + AP::ahrs().get_home().alt;
#else
return false;
#endif // AP_AHRS_ENABLED
break;
case AltFrame::ABOVE_ORIGIN:
#if AP_AHRS_ENABLED
{
// fail if we cannot get ekf origin
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
alt_abs = alt + ekf_origin.alt;
}
break;
#else
return false;
#endif // AP_AHRS_ENABLED
case AltFrame::ABOVE_TERRAIN:
alt_abs = alt + alt_terr_cm;
break;
}
// convert absolute to desired frame
switch (desired_frame) {
case AltFrame::ABSOLUTE:
ret_alt_cm = alt_abs;
return true;
case AltFrame::ABOVE_HOME:
#if AP_AHRS_ENABLED
if (!AP::ahrs().home_is_set()) {
return false;
}
ret_alt_cm = alt_abs - AP::ahrs().get_home().alt;
#else
return false;
#endif // AP_AHRS_ENABLED
return true;
case AltFrame::ABOVE_ORIGIN:
#if AP_AHRS_ENABLED
{
// fail if we cannot get ekf origin
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
ret_alt_cm = alt_abs - ekf_origin.alt;
return true;
}
#else
return false;
#endif // AP_AHRS_ENABLED
case AltFrame::ABOVE_TERRAIN:
ret_alt_cm = alt_abs - alt_terr_cm;
return true;
}
return false; // LCOV_EXCL_LINE - not reachable
}
bool Location::get_alt_m(AltFrame desired_frame, float &ret_alt) const
{
int32_t ret_alt_cm;
if (!get_alt_cm(desired_frame, ret_alt_cm)) {
return false;
}
ret_alt = ret_alt_cm * 0.01;
return true;
}
#if AP_AHRS_ENABLED
// converts location to a vector from origin; if this method returns
// false then vec_ne is unmodified
template<typename T>
bool Location::get_vector_xy_from_origin_NE(T &vec_ne) const
{
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
vec_ne.x = (lat-ekf_origin.lat) * LATLON_TO_CM;
vec_ne.y = diff_longitude(lng,ekf_origin.lng) * LATLON_TO_CM * longitude_scale((lat+ekf_origin.lat)/2);
return true;
}
// define for float and position vectors
template bool Location::get_vector_xy_from_origin_NE<Vector2f>(Vector2f &vec_ne) const;
#if HAL_WITH_POSTYPE_DOUBLE
template bool Location::get_vector_xy_from_origin_NE<Vector2p>(Vector2p &vec_ne) const;
#endif
// converts location to a vector from origin; if this method returns
// false then vec_neu is unmodified
template<typename T>
bool Location::get_vector_from_origin_NEU(T &vec_neu) const
{
// convert altitude
int32_t alt_above_origin_cm = 0;
if (!get_alt_cm(AltFrame::ABOVE_ORIGIN, alt_above_origin_cm)) {
return false;
}
// convert lat, lon
if (!get_vector_xy_from_origin_NE(vec_neu.xy())) {
return false;
}
vec_neu.z = alt_above_origin_cm;
return true;
}
// define for float and position vectors
template bool Location::get_vector_from_origin_NEU<Vector3f>(Vector3f &vec_neu) const;
#if HAL_WITH_POSTYPE_DOUBLE
template bool Location::get_vector_from_origin_NEU<Vector3p>(Vector3p &vec_neu) const;
#endif
#endif // AP_AHRS_ENABLED
// return horizontal distance in meters between two locations
ftype Location::get_distance(const Location &loc2) const
{
ftype dlat = (ftype)(loc2.lat - lat);
ftype dlng = ((ftype)diff_longitude(loc2.lng,lng)) * longitude_scale((lat+loc2.lat)/2);
return norm(dlat, dlng) * LOCATION_SCALING_FACTOR;
}
// return the altitude difference in meters taking into account alt frame.
bool Location::get_alt_distance(const Location &loc2, ftype &distance) const
{
int32_t alt1, alt2;
if (!get_alt_cm(AltFrame::ABSOLUTE, alt1) || !loc2.get_alt_cm(AltFrame::ABSOLUTE, alt2)) {
return false;
}
distance = (alt1 - alt2) * 0.01;
return true;
}
/*
return the distance in meters in North/East plane as a N/E vector
from loc1 to loc2
*/
Vector2f Location::get_distance_NE(const Location &loc2) const
{
return Vector2f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((loc2.lat+lat)/2));
}
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2, NOT CONSIDERING ALT FRAME!
Vector3f Location::get_distance_NED(const Location &loc2) const
{
return Vector3f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2),
(alt - loc2.alt) * 0.01);
}
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2
Vector3d Location::get_distance_NED_double(const Location &loc2) const
{
return Vector3d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR),
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((lat+loc2.lat)/2),
(alt - loc2.alt) * 0.01);
}
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2 considering alt frame, if altitude cannot be resolved down distance is 0
Vector3f Location::get_distance_NED_alt_frame(const Location &loc2) const
{
int32_t alt1, alt2 = 0;
if (!get_alt_cm(AltFrame::ABSOLUTE, alt1) || !loc2.get_alt_cm(AltFrame::ABSOLUTE, alt2)) {
// one or both of the altitudes are invalid, don't do alt distance calc
alt1 = 0, alt2 = 0;
}
return Vector3f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
diff_longitude(loc2.lng,lng) * LOCATION_SCALING_FACTOR * longitude_scale((loc2.lat+lat)/2),
(alt1 - alt2) * 0.01);
}
Vector2d Location::get_distance_NE_double(const Location &loc2) const
{
return Vector2d((loc2.lat - lat) * double(LOCATION_SCALING_FACTOR),
diff_longitude(loc2.lng,lng) * double(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2));
}
Vector2F Location::get_distance_NE_ftype(const Location &loc2) const
{
return Vector2F((loc2.lat - lat) * ftype(LOCATION_SCALING_FACTOR),
diff_longitude(loc2.lng,lng) * ftype(LOCATION_SCALING_FACTOR) * longitude_scale((lat+loc2.lat)/2));
}
// extrapolate latitude/longitude given distances (in meters) north and east
void Location::offset_latlng(int32_t &lat, int32_t &lng, ftype ofs_north, ftype ofs_east)
{
const int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV;
const int64_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(lat+dlat/2);
lat += dlat;
lat = limit_lattitude(lat);
lng = wrap_longitude(dlng+lng);
}
// extrapolate latitude/longitude given distances (in meters) north and east
void Location::offset(ftype ofs_north, ftype ofs_east)
{
offset_latlng(lat, lng, ofs_north, ofs_east);
}
// extrapolate latitude/longitude given distances (in meters) north
// and east. Note that this is metres, *even for the altitude*.
void Location::offset(const Vector3p &ofs_ned)
{
offset_latlng(lat, lng, ofs_ned.x, ofs_ned.y);
alt += -ofs_ned.z * 100; // m -> cm
}
/*
* extrapolate latitude/longitude given bearing and distance
* Note that this function is accurate to about 1mm at a distance of
* 100m. This function has the advantage that it works in relative
* positions, so it keeps the accuracy even when dealing with small
* distances and floating point numbers
*/
void Location::offset_bearing(ftype bearing_deg, ftype distance)
{
const ftype ofs_north = cosF(radians(bearing_deg)) * distance;
const ftype ofs_east = sinF(radians(bearing_deg)) * distance;
offset(ofs_north, ofs_east);
}
// extrapolate latitude/longitude given bearing, pitch and distance
void Location::offset_bearing_and_pitch(ftype bearing_deg, ftype pitch_deg, ftype distance)
{
const ftype ofs_north = cosF(radians(pitch_deg)) * cosF(radians(bearing_deg)) * distance;
const ftype ofs_east = cosF(radians(pitch_deg)) * sinF(radians(bearing_deg)) * distance;
offset(ofs_north, ofs_east);
const int32_t dalt = sinF(radians(pitch_deg)) * distance *100.0f;
alt += dalt;
}
ftype Location::longitude_scale(int32_t lat)
{
ftype scale = cosF(lat * (1.0e-7 * DEG_TO_RAD));
return MAX(scale, 0.01);
}
/*
* convert invalid waypoint with useful data. return true if location changed
*/
bool Location::sanitize(const Location &defaultLoc)
{
bool has_changed = false;
// convert lat/lng=0 to mean current point
if (lat == 0 && lng == 0) {
lat = defaultLoc.lat;
lng = defaultLoc.lng;
has_changed = true;
}
// convert relative alt=0 to mean current alt
if (alt == 0 && relative_alt) {
int32_t defaultLoc_alt;
if (defaultLoc.get_alt_cm(get_alt_frame(), defaultLoc_alt)) {
alt = defaultLoc_alt;
has_changed = true;
}
}
// limit lat/lng to appropriate ranges
if (!check_latlng()) {
lat = defaultLoc.lat;
lng = defaultLoc.lng;
has_changed = true;
}
return has_changed;
}
// return bearing in radians from location to loc2, return is 0 to 2*Pi
ftype Location::get_bearing(const Location &loc2) const
{
const int32_t off_x = diff_longitude(loc2.lng,lng);
const int32_t off_y = (loc2.lat - lat) / loc2.longitude_scale((lat+loc2.lat)/2);
ftype bearing = (M_PI*0.5) + atan2F(-off_y, off_x);
if (bearing < 0) {
bearing += 2*M_PI;
}
return bearing;
}
/*
return true if lat and lng match. Ignores altitude and options
*/
bool Location::same_latlon_as(const Location &loc2) const
{
return (lat == loc2.lat) && (lng == loc2.lng);
}
bool Location::same_alt_as(const Location &loc2) const
{
// fast path if the altitude frame is the same
if (this->get_alt_frame() == loc2.get_alt_frame()) {
return this->alt == loc2.alt;
}
ftype alt_diff;
bool have_diff = this->get_alt_distance(loc2, alt_diff);
const ftype tolerance = FLT_EPSILON;
return have_diff && (fabsF(alt_diff) < tolerance);
}
// return true when lat and lng are within range
bool Location::check_latlng() const
{
return check_lat(lat) && check_lng(lng);
}
// see if location is past a line perpendicular to
// the line between point1 and point2 and passing through point2.
// If point1 is our previous waypoint and point2 is our target waypoint
// then this function returns true if we have flown past
// the target waypoint
bool Location::past_interval_finish_line(const Location &point1, const Location &point2) const
{
return this->line_path_proportion(point1, point2) >= 1.0f;
}
/*
return the proportion we are along the path from point1 to
point2, along a line parallel to point1<->point2.
This will be more than 1 if we have passed point2
*/
float Location::line_path_proportion(const Location &point1, const Location &point2) const
{
const Vector2f vec1 = point1.get_distance_NE(point2);
const Vector2f vec2 = point1.get_distance_NE(*this);
const ftype dsquared = sq(vec1.x) + sq(vec1.y);
if (dsquared < 0.001f) {
// the two points are very close together
return 1.0f;
}
return (vec1 * vec2) / dsquared;
}
/*
wrap longitude for -180e7 to 180e7
*/
int32_t Location::wrap_longitude(int64_t lon)
{
if (lon > 1800000000L) {
lon = int32_t(lon-3600000000LL);
} else if (lon < -1800000000L) {
lon = int32_t(lon+3600000000LL);
}
return int32_t(lon);
}
/*
get lon1-lon2, wrapping at -180e7 to 180e7
*/
int32_t Location::diff_longitude(int32_t lon1, int32_t lon2)
{
if ((lon1 & 0x80000000) == (lon2 & 0x80000000)) {
// common case of same sign
return lon1 - lon2;
}
int64_t dlon = int64_t(lon1)-int64_t(lon2);
if (dlon > 1800000000LL) {
dlon -= 3600000000LL;
} else if (dlon < -1800000000LL) {
dlon += 3600000000LL;
}
return int32_t(dlon);
}
/*
limit latitude to -90e7 to 90e7
*/
int32_t Location::limit_lattitude(int32_t lat)
{
if (lat > 900000000L) {
lat = 1800000000LL - lat;
} else if (lat < -900000000L) {
lat = -(1800000000LL + lat);
}
return lat;
}
// update altitude and alt-frame base on this location's horizontal position between point1 and point2
// this location's lat,lon is used to calculate the alt of the closest point on the line between point1 and point2
// origin and destination's altitude frames must be the same
// this alt-frame will be updated to match the destination alt frame
void Location::linearly_interpolate_alt(const Location &point1, const Location &point2)
{
// new target's distance along the original track and then linear interpolate between the original origin and destination altitudes
set_alt_cm(point1.alt + (point2.alt - point1.alt) * constrain_float(line_path_proportion(point1, point2), 0.0f, 1.0f), point2.get_alt_frame());
}
#endif // HAL_BOOTLOADER_BUILD