From c99bcb7feaa761c5826f2e1d844d0502a3b79538 Mon Sep 17 00:00:00 2001 From: Ahir Reddy Date: Tue, 15 Apr 2014 00:07:55 -0700 Subject: [PATCH] SPARK-1374: PySpark API for SparkSQL An initial API that exposes SparkSQL functionality in PySpark. A PythonRDD composed of dictionaries, with string keys and primitive values (boolean, float, int, long, string) can be converted into a SchemaRDD that supports sql queries. ``` from pyspark.context import SQLContext sqlCtx = SQLContext(sc) rdd = sc.parallelize([{"field1" : 1, "field2" : "row1"}, {"field1" : 2, "field2": "row2"}, {"field1" : 3, "field2": "row3"}]) srdd = sqlCtx.applySchema(rdd) sqlCtx.registerRDDAsTable(srdd, "table1") srdd2 = sqlCtx.sql("SELECT field1 AS f1, field2 as f2 from table1") srdd2.collect() ``` The last line yields ```[{"f1" : 1, "f2" : "row1"}, {"f1" : 2, "f2": "row2"}, {"f1" : 3, "f2": "row3"}]``` Author: Ahir Reddy Author: Michael Armbrust Closes #363 from ahirreddy/pysql and squashes the following commits: 0294497 [Ahir Reddy] Updated log4j properties to supress Hive Warns 307d6e0 [Ahir Reddy] Style fix 6f7b8f6 [Ahir Reddy] Temporary fix MIMA checker. Since we now assemble Spark jar with Hive, we don't want to check the interfaces of all of our hive dependencies 3ef074a [Ahir Reddy] Updated documentation because classes moved to sql.py 29245bf [Ahir Reddy] Cache underlying SchemaRDD instead of generating and caching PythonRDD f2312c7 [Ahir Reddy] Moved everything into sql.py a19afe4 [Ahir Reddy] Doc fixes 6d658ba [Ahir Reddy] Remove the metastore directory created by the HiveContext tests in SparkSQL 521ff6d [Ahir Reddy] Trying to get spark to build with hive ab95eba [Ahir Reddy] Set SPARK_HIVE=true on jenkins ded03e7 [Ahir Reddy] Added doc test for HiveContext 22de1d4 [Ahir Reddy] Fixed maven pyrolite dependency e4da06c [Ahir Reddy] Display message if hive is not built into spark 227a0be [Michael Armbrust] Update API links. Fix Hive example. 58e2aa9 [Michael Armbrust] Build Docs for pyspark SQL Api. Minor fixes. 4285340 [Michael Armbrust] Fix building of Hive API Docs. 38a92b0 [Michael Armbrust] Add note to future non-python developers about python docs. 337b201 [Ahir Reddy] Changed com.clearspring.analytics stream version from 2.4.0 to 2.5.1 to match SBT build, and added pyrolite to maven build 40491c9 [Ahir Reddy] PR Changes + Method Visibility 1836944 [Michael Armbrust] Fix comments. e00980f [Michael Armbrust] First draft of python sql programming guide. b0192d3 [Ahir Reddy] Added Long, Double and Boolean as usable types + unit test f98a422 [Ahir Reddy] HiveContexts 79621cf [Ahir Reddy] cleaning up cruft b406ba0 [Ahir Reddy] doctest formatting 20936a5 [Ahir Reddy] Added tests and documentation e4d21b4 [Ahir Reddy] Added pyrolite dependency 79f739d [Ahir Reddy] added more tests 7515ba0 [Ahir Reddy] added more tests :) d26ec5e [Ahir Reddy] added test e9f5b8d [Ahir Reddy] adding tests 906d180 [Ahir Reddy] added todo explaining cost of creating Row object in python 251f99d [Ahir Reddy] for now only allow dictionaries as input 09b9980 [Ahir Reddy] made jrdd explicitly lazy c608947 [Ahir Reddy] SchemaRDD now has all RDD operations 725c91e [Ahir Reddy] awesome row objects 55d1c76 [Ahir Reddy] return row objects 4fe1319 [Ahir Reddy] output dictionaries correctly be079de [Ahir Reddy] returning dictionaries works cd5f79f [Ahir Reddy] Switched to using Scala SQLContext e948bd9 [Ahir Reddy] yippie 4886052 [Ahir Reddy] even better c0fb1c6 [Ahir Reddy] more working 043ca85 [Ahir Reddy] working 5496f9f [Ahir Reddy] doesn't crash b8b904b [Ahir Reddy] Added schema rdd class 67ba875 [Ahir Reddy] java to python, and python to java bcc0f23 [Ahir Reddy] Java to python ab6025d [Ahir Reddy] compiling --- core/pom.xml | 5 + .../apache/spark/api/python/PythonRDD.scala | 32 ++ dev/run-tests | 1 + docs/README.md | 2 +- docs/_plugins/copy_api_dirs.rb | 4 +- docs/sql-programming-guide.md | 103 ++++- pom.xml | 2 +- project/SparkBuild.scala | 3 +- python/pyspark/__init__.py | 18 +- python/pyspark/java_gateway.py | 4 + python/pyspark/sql.py | 363 ++++++++++++++++++ python/run-tests | 4 + .../org/apache/spark/sql/SQLContext.scala | 27 ++ .../org/apache/spark/sql/SchemaRDD.scala | 23 ++ .../org/apache/spark/sql/hive/TestHive.scala | 3 +- sql/hive/src/test/resources/log4j.properties | 3 + .../spark/tools/GenerateMIMAIgnore.scala | 4 +- 17 files changed, 589 insertions(+), 12 deletions(-) create mode 100644 python/pyspark/sql.py diff --git a/core/pom.xml b/core/pom.xml index a1bdd8ec68aeb..d87e2bca030e3 100644 --- a/core/pom.xml +++ b/core/pom.xml @@ -266,6 +266,11 @@ junit-interface test + + org.spark-project + pyrolite + 2.0 + target/scala-${scala.binary.version}/classes diff --git a/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala b/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala index 32f1100406d74..f9d86fed34d0f 100644 --- a/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala +++ b/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala @@ -25,6 +25,8 @@ import java.util.{List => JList, ArrayList => JArrayList, Map => JMap, Collectio import scala.collection.JavaConversions._ import scala.reflect.ClassTag +import net.razorvine.pickle.{Pickler, Unpickler} + import org.apache.spark._ import org.apache.spark.api.java.{JavaSparkContext, JavaPairRDD, JavaRDD} import org.apache.spark.broadcast.Broadcast @@ -284,6 +286,36 @@ private[spark] object PythonRDD { file.close() } + /** + * Convert an RDD of serialized Python dictionaries to Scala Maps + * TODO: Support more Python types. + */ + def pythonToJavaMap(pyRDD: JavaRDD[Array[Byte]]): JavaRDD[Map[String, _]] = { + pyRDD.rdd.mapPartitions { iter => + val unpickle = new Unpickler + // TODO: Figure out why flatMap is necessay for pyspark + iter.flatMap { row => + unpickle.loads(row) match { + case objs: java.util.ArrayList[JMap[String, _] @unchecked] => objs.map(_.toMap) + // Incase the partition doesn't have a collection + case obj: JMap[String @unchecked, _] => Seq(obj.toMap) + } + } + } + } + + /** + * Convert and RDD of Java objects to and RDD of serialized Python objects, that is usable by + * PySpark. + */ + def javaToPython(jRDD: JavaRDD[Any]): JavaRDD[Array[Byte]] = { + jRDD.rdd.mapPartitions { iter => + val pickle = new Pickler + iter.map { row => + pickle.dumps(row) + } + } + } } private diff --git a/dev/run-tests b/dev/run-tests index 6ad674a2ba127..0725b681f1a1b 100755 --- a/dev/run-tests +++ b/dev/run-tests @@ -34,6 +34,7 @@ else fi JAVA_VERSION=$($java_cmd -version 2>&1 | sed 's/java version "\(.*\)\.\(.*\)\..*"/\1\2/; 1q') [ "$JAVA_VERSION" -ge 18 ] && echo "" || echo "[Warn] Java 8 tests will not run because JDK version is < 1.8." +export SPARK_HIVE=true echo "=========================================================================" echo "Running Apache RAT checks" diff --git a/docs/README.md b/docs/README.md index 0678fc5c86706..75b1811ba99af 100644 --- a/docs/README.md +++ b/docs/README.md @@ -42,7 +42,7 @@ To mark a block of code in your markdown to be syntax highlighted by jekyll duri You can build just the Spark scaladoc by running `sbt/sbt doc` from the SPARK_PROJECT_ROOT directory. -Similarly, you can build just the PySpark epydoc by running `epydoc --config epydoc.conf` from the SPARK_PROJECT_ROOT/pyspark directory. +Similarly, you can build just the PySpark epydoc by running `epydoc --config epydoc.conf` from the SPARK_PROJECT_ROOT/pyspark directory. Documentation is only generated for classes that are listed as public in `__init__.py`. When you run `jekyll` in the docs directory, it will also copy over the scaladoc for the various Spark subprojects into the docs directory (and then also into the _site directory). We use a jekyll plugin to run `sbt/sbt doc` before building the site so if you haven't run it (recently) it may take some time as it generates all of the scaladoc. The jekyll plugin also generates the PySpark docs using [epydoc](http://epydoc.sourceforge.net/). diff --git a/docs/_plugins/copy_api_dirs.rb b/docs/_plugins/copy_api_dirs.rb index bbd56d2fd13bb..05f0bd47a88a5 100644 --- a/docs/_plugins/copy_api_dirs.rb +++ b/docs/_plugins/copy_api_dirs.rb @@ -32,8 +32,8 @@ curr_dir = pwd cd("..") - puts "Running sbt/sbt doc from " + pwd + "; this may take a few minutes..." - puts `sbt/sbt doc` + puts "Running 'sbt/sbt doc hive/doc' from " + pwd + "; this may take a few minutes..." + puts `sbt/sbt doc hive/doc` puts "Moving back into docs dir." cd("docs") diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index a59393e1424de..6f616fb7c2448 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -20,7 +20,7 @@ a schema that describes the data types of each column in the row. A SchemaRDD i in a traditional relational database. A SchemaRDD can be created from an existing RDD, parquet file, or by running HiveQL against data stored in [Apache Hive](http://hive.apache.org/). -**All of the examples on this page use sample data included in the Spark distribution and can be run in the spark-shell.** +**All of the examples on this page use sample data included in the Spark distribution and can be run in the `spark-shell`.** @@ -33,6 +33,19 @@ a schema that describes the data types of each column in the row. A JavaSchemaR in a traditional relational database. A JavaSchemaRDD can be created from an existing RDD, parquet file, or by running HiveQL against data stored in [Apache Hive](http://hive.apache.org/). + +
+ +Spark SQL allows relational queries expressed in SQL or HiveQL to be executed using +Spark. At the core of this component is a new type of RDD, +[SchemaRDD](api/pyspark/pyspark.sql.SchemaRDD-class.html). SchemaRDDs are composed +[Row](api/pyspark/pyspark.sql.Row-class.html) objects along with +a schema that describes the data types of each column in the row. A SchemaRDD is similar to a table +in a traditional relational database. A SchemaRDD can be created from an existing RDD, parquet +file, or by running HiveQL against data stored in [Apache Hive](http://hive.apache.org/). + +**All of the examples on this page use sample data included in the Spark distribution and can be run in the `pyspark` shell.** +
*************************************************************************************************** @@ -44,7 +57,7 @@ file, or by running HiveQL against data stored in [Apache Hive](http://hive.apac The entry point into all relational functionality in Spark is the [SQLContext](api/sql/core/index.html#org.apache.spark.sql.SQLContext) class, or one of its -decendents. To create a basic SQLContext, all you need is a SparkContext. +descendants. To create a basic SQLContext, all you need is a SparkContext. {% highlight scala %} val sc: SparkContext // An existing SparkContext. @@ -60,7 +73,7 @@ import sqlContext._ The entry point into all relational functionality in Spark is the [JavaSQLContext](api/sql/core/index.html#org.apache.spark.sql.api.java.JavaSQLContext) class, or one -of its decendents. To create a basic JavaSQLContext, all you need is a JavaSparkContext. +of its descendants. To create a basic JavaSQLContext, all you need is a JavaSparkContext. {% highlight java %} JavaSparkContext ctx = ...; // An existing JavaSparkContext. @@ -69,6 +82,19 @@ JavaSQLContext sqlCtx = new org.apache.spark.sql.api.java.JavaSQLContext(ctx); +
+ +The entry point into all relational functionality in Spark is the +[SQLContext](api/pyspark/pyspark.sql.SQLContext-class.html) class, or one +of its decedents. To create a basic SQLContext, all you need is a SparkContext. + +{% highlight python %} +from pyspark.sql import SQLContext +sqlCtx = SQLContext(sc) +{% endhighlight %} + +
+ ## Running SQL on RDDs @@ -81,7 +107,7 @@ One type of table that is supported by Spark SQL is an RDD of Scala case classes defines the schema of the table. The names of the arguments to the case class are read using reflection and become the names of the columns. Case classes can also be nested or contain complex types such as Sequences or Arrays. This RDD can be implicitly converted to a SchemaRDD and then be -registered as a table. Tables can used in subsequent SQL statements. +registered as a table. Tables can be used in subsequent SQL statements. {% highlight scala %} val sqlContext = new org.apache.spark.sql.SQLContext(sc) @@ -176,6 +202,34 @@ List teenagerNames = teenagers.map(new Function() { +
+ +One type of table that is supported by Spark SQL is an RDD of dictionaries. The keys of the +dictionary define the columns names of the table, and the types are inferred by looking at the first +row. Any RDD of dictionaries can converted to a SchemaRDD and then registered as a table. Tables +can be used in subsequent SQL statements. + +{% highlight python %} +# Load a text file and convert each line to a dictionary. +lines = sc.textFile("examples/src/main/resources/people.txt") +parts = lines.map(lambda l: l.split(",")) +people = parts.map(lambda p: {"name": p[0], "age": int(p[1])}) + +# Infer the schema, and register the SchemaRDD as a table. +# In future versions of PySpark we would like to add support for registering RDDs with other +# datatypes as tables +peopleTable = sqlCtx.inferSchema(people) +peopleTable.registerAsTable("people") + +# SQL can be run over SchemaRDDs that have been registered as a table. +teenagers = sqlCtx.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") + +# The results of SQL queries are RDDs and support all the normal RDD operations. +teenNames = teenagers.map(lambda p: "Name: " + p.name) +{% endhighlight %} + +
+ **Note that Spark SQL currently uses a very basic SQL parser.** @@ -231,6 +285,27 @@ parquetFile.registerAsTable("parquetFile"); JavaSchemaRDD teenagers = sqlCtx.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19"); +{% endhighlight %} + + + +
+ +{% highlight python %} + +peopleTable # The SchemaRDD from the previous example. + +# SchemaRDDs can be saved as parquet files, maintaining the schema information. +peopleTable.saveAsParquetFile("people.parquet") + +# Read in the parquet file created above. Parquet files are self-describing so the schema is preserved. +# The result of loading a parquet file is also a SchemaRDD. +parquetFile = sqlCtx.parquetFile("people.parquet") + +# Parquet files can also be registered as tables and then used in SQL statements. +parquetFile.registerAsTable("parquetFile"); +teenagers = sqlCtx.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19") + {% endhighlight %}
@@ -318,4 +393,24 @@ Row[] results = hiveCtx.hql("FROM src SELECT key, value").collect(); +
+ +When working with Hive one must construct a `HiveContext`, which inherits from `SQLContext`, and +adds support for finding tables in in the MetaStore and writing queries using HiveQL. In addition to +the `sql` method a `HiveContext` also provides an `hql` methods, which allows queries to be +expressed in HiveQL. + +{% highlight python %} + +from pyspark.sql import HiveContext +hiveCtx = HiveContext(sc) + +hiveCtx.hql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") +hiveCtx.hql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src") + +# Queries can be expressed in HiveQL. +results = hiveCtx.hql("FROM src SELECT key, value").collect() + +{% endhighlight %} +
diff --git a/pom.xml b/pom.xml index 0eacedf7a6533..cd204376de5db 100644 --- a/pom.xml +++ b/pom.xml @@ -262,7 +262,7 @@ com.clearspring.analytics stream - 2.4.0 + 2.5.1