forked from PrAYtele/Stable-Texturify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
req_txt2img.py
103 lines (90 loc) · 3.09 KB
/
req_txt2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import base64
import io
import json
import requests
from PIL import Image
import yaml
def image_to_base64(image_path):
with Image.open(image_path) as img:
buffer = io.BytesIO()
img.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode()
def base64_to_image(base64_data, output_path):
img_data = base64.b64decode(base64_data)
img = Image.open(io.BytesIO(img_data))
img.save(output_path, format="PNG")
with open("Render_config.yaml", "r") as f:
config = yaml.safe_load(f)
sd_model = config["sd_model_checkpoint"]
# 从配置中提取参数
dep_image_path = "concatenated_image.jpg"
lineart_image_path = "concatenated_lineart.jpg"
seg_image_path = "concatenated_seg.jpg"
encoded_image_depth = image_to_base64(dep_image_path)
encoded_image_lineart = image_to_base64(lineart_image_path)
encoded_image_seg = image_to_base64(seg_image_path)
url = "http://127.0.0.1:7860/sdapi/v1/txt2img"
model_list = requests.get("http://127.0.0.1:7860/sdapi/v1/sd-models")
print(model_list.text)
data = {
'prompt': '((highres)), (charturnerv2:0.7), (simple background:1.3), multiple views,((cloth)), <lora:charTurnBetaLora:0.1>',
'negative_prompt': 'easynegative,(shadow:1.6),((lighting)),((naked)),((soft lighting)),fold',
'enable_hr': False,
#'denoising_strength': 1.0,
# 'hr_upscaler': 'Latent (bicubic)',
# 'hr_scale': 1.0,
'seed': -1,
'sampler_name': 'DPM++ 2M Karras',
'batch_size': 1,
'steps': 25,
#'quick_steps': 20,
'cfg_scale': 4,
'width': 2016,
'height': 896,
# 'override_settings': {'CLIP_stop_at_last_layers': 1},
'override_settings': {'sd_model_checkpoint': sd_model},
# 'override_settings_restore_afterwards': 'false',
# 'hr_second_pass_steps': 20,
"alwayson_scripts": {
"controlnet": {
"args": [
{
"enabled":True,
"input_image": encoded_image_depth,
"model": "control_v11f1p_sd15_depth",
"resize_mode": 0,
"processor_res":2048,
"weight":0.8
},
{
"enabled":True,
"input_image": encoded_image_seg,
# "module":'invert',
"model": "control_v11p_sd15_seg",
"resize_mode": 0,
"processor_res":2048,
"weight":0.5
},
{
"enabled":False,
"input_image": encoded_image_lineart,
"module":'invert',
"model": "control_v11p_sd15_softedge",
"resize_mode": 0,
"processor_res":2048,
"weight":0.1
}
]
}
}
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, data=json.dumps(data), headers=headers)
if response.status_code == 200:
print("Request was successful")
response_data = response.json()
output_image_path = "output_image.png"
base64_to_image(response_data["images"][0], output_image_path)
print(f"Saved output image to {output_image_path}")
else:
print(f"Request failed with status code {response.status_code}")