-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft_pass_effect_test.cpp
340 lines (296 loc) · 11.9 KB
/
fft_pass_effect_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Unit tests for FFTPassEffect.
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "effect_chain.h"
#include "fft_pass_effect.h"
#include "glew.h"
#include "gtest/gtest.h"
#include "image_format.h"
#include "multiply_effect.h"
#include "test_util.h"
namespace movit {
namespace {
// Generate a random number uniformly distributed between [-1.0, 1.0].
float uniform_random()
{
return 2.0 * ((float)rand() / RAND_MAX - 0.5);
}
void setup_fft(EffectChain *chain, int fft_size, bool inverse,
bool add_normalizer = false,
FFTPassEffect::Direction direction = FFTPassEffect::HORIZONTAL)
{
assert((fft_size & (fft_size - 1)) == 0); // Must be power of two.
for (int i = 1, subsize = 2; subsize <= fft_size; ++i, subsize *= 2) {
Effect *fft_effect = chain->add_effect(new FFTPassEffect());
bool ok = fft_effect->set_int("fft_size", fft_size);
ok |= fft_effect->set_int("pass_number", i);
ok |= fft_effect->set_int("inverse", inverse);
ok |= fft_effect->set_int("direction", direction);
assert(ok);
}
if (add_normalizer) {
float factor[4] = { 1.0f / fft_size, 1.0f / fft_size, 1.0f / fft_size, 1.0f / fft_size };
Effect *multiply_effect = chain->add_effect(new MultiplyEffect());
bool ok = multiply_effect->set_vec4("factor", factor);
assert(ok);
}
}
void run_fft(const float *in, float *out, int fft_size, bool inverse,
bool add_normalizer = false,
FFTPassEffect::Direction direction = FFTPassEffect::HORIZONTAL)
{
int width, height;
if (direction == FFTPassEffect::HORIZONTAL) {
width = fft_size;
height = 1;
} else {
width = 1;
height = fft_size;
}
EffectChainTester tester(in, width, height, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, inverse, add_normalizer, direction);
tester.run(out, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
}
} // namespace
TEST(FFTPassEffectTest, ZeroStaysZero) {
const int fft_size = 64;
float data[fft_size * 4] = { 0 };
float out_data[fft_size * 4];
run_fft(data, out_data, fft_size, false);
expect_equal(data, out_data, 4, fft_size);
run_fft(data, out_data, fft_size, true);
expect_equal(data, out_data, 4, fft_size);
}
TEST(FFTPassEffectTest, Impulse) {
const int fft_size = 64;
float data[fft_size * 4] = { 0 };
float expected_data[fft_size * 4], out_data[fft_size * 4];
data[0] = 1.0;
data[1] = 1.2;
data[2] = 1.4;
data[3] = 3.0;
for (int i = 0; i < fft_size; ++i) {
expected_data[i * 4 + 0] = data[0];
expected_data[i * 4 + 1] = data[1];
expected_data[i * 4 + 2] = data[2];
expected_data[i * 4 + 3] = data[3];
}
run_fft(data, out_data, fft_size, false);
expect_equal(expected_data, out_data, 4, fft_size);
run_fft(data, out_data, fft_size, true);
expect_equal(expected_data, out_data, 4, fft_size);
}
TEST(FFTPassEffectTest, SingleFrequency) {
const int fft_size = 16;
float data[fft_size * 4] = { 0 };
float expected_data[fft_size * 4], out_data[fft_size * 4];
for (int i = 0; i < fft_size; ++i) {
data[i * 4 + 0] = sin(2.0 * M_PI * (4.0 * i) / fft_size);
data[i * 4 + 1] = 0.0;
data[i * 4 + 2] = 0.0;
data[i * 4 + 3] = 0.0;
}
for (int i = 0; i < fft_size; ++i) {
expected_data[i * 4 + 0] = 0.0;
expected_data[i * 4 + 1] = 0.0;
expected_data[i * 4 + 2] = 0.0;
expected_data[i * 4 + 3] = 0.0;
}
expected_data[4 * 4 + 1] = -8.0;
expected_data[12 * 4 + 1] = 8.0;
run_fft(data, out_data, fft_size, false, false, FFTPassEffect::HORIZONTAL);
expect_equal(expected_data, out_data, 4, fft_size);
run_fft(data, out_data, fft_size, false, false, FFTPassEffect::VERTICAL);
expect_equal(expected_data, out_data, 4, fft_size);
}
TEST(FFTPassEffectTest, Repeat) {
srand(12345);
for (int fft_size = 2; fft_size < 512; fft_size *= 2) {
const int num_repeats = 31; // Prime, to make things more challenging.
float data[num_repeats * fft_size * 4];
float expected_data[num_repeats * fft_size * 4], out_data[num_repeats * fft_size * 4];
for (int i = 0; i < num_repeats * fft_size * 4; ++i) {
data[i] = uniform_random();
}
for (int i = 0; i < num_repeats; ++i) {
run_fft(data + i * fft_size * 4, expected_data + i * fft_size * 4, fft_size, false);
}
{
// Horizontal.
EffectChainTester tester(data, num_repeats * fft_size, 1, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, false);
tester.run(out_data, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
expect_equal(expected_data, out_data, 4, num_repeats * fft_size);
}
{
// Vertical.
EffectChainTester tester(data, 1, num_repeats * fft_size, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::VERTICAL);
tester.run(out_data, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
expect_equal(expected_data, out_data, 4, num_repeats * fft_size);
}
}
}
TEST(FFTPassEffectTest, TwoDimensional) { // Implicitly tests vertical.
srand(1234);
const int fft_size = 16;
float in[fft_size * fft_size * 4], out[fft_size * fft_size * 4], expected_out[fft_size * fft_size * 4];
for (int y = 0; y < fft_size; ++y) {
for (int x = 0; x < fft_size; ++x) {
in[(y * fft_size + x) * 4 + 0] =
sin(2.0 * M_PI * (2 * x + 3 * y) / fft_size);
in[(y * fft_size + x) * 4 + 1] = 0.0;
in[(y * fft_size + x) * 4 + 2] = 0.0;
in[(y * fft_size + x) * 4 + 3] = 0.0;
}
}
memset(expected_out, 0, sizeof(expected_out));
// This result has been verified using the fft2() function in Octave,
// which uses FFTW.
expected_out[(3 * fft_size + 2) * 4 + 1] = -128.0;
expected_out[(13 * fft_size + 14) * 4 + 1] = 128.0;
EffectChainTester tester(in, fft_size, fft_size, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::HORIZONTAL);
setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::VERTICAL);
tester.run(out, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
expect_equal(expected_out, out, 4 * fft_size, fft_size, 0.25, 0.0005);
}
// The classic paper for FFT correctness testing is Funda Ergün:
// “Testing Multivariate Linear Functions: Overcoming the Generator Bottleneck”
// (http://www.cs.sfu.ca/~funda/PUBLICATIONS/stoc95.ps), which proves that
// testing three basic properties of FFTs guarantees that the function is
// correct (at least under the assumption that errors are random).
//
// We don't follow the paper directly, though, for a few reasons: First,
// Ergün's paper really considers _self-correcting_ systems, which may
// be stochastically faulty, and thus uses various relatively complicated
// bounds and tests we don't really need. Second, the FFTs it considers
// are all about polynomials over finite fields, which means that results
// are exact and thus easy to test; we work with floats (half-floats!),
// and thus need some error tolerance.
//
// So instead, we follow the implementation of FFTW, which is really the
// gold standard when it comes to FFTs these days. They hard-code 20
// testing rounds as opposed to the more complicated bounds in the paper,
// and have a simpler version of the third test.
//
// The error bounds are set somewhat empirically, but remember that these
// inputs will give frequency values as large as ~16, where 0.025 is
// within the 9th bit (of 11 total mantissa bits in fp16).
const int ergun_rounds = 20;
// Test 1: Test that FFT(a + b) = FFT(a) + FFT(b).
TEST(FFTPassEffectTest, ErgunLinearityTest) {
srand(1234);
const int max_fft_size = 64;
float a[max_fft_size * 4], b[max_fft_size * 4], sum[max_fft_size * 4];
float a_out[max_fft_size * 4], b_out[max_fft_size * 4], sum_out[max_fft_size * 4], expected_sum_out[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int inverse = 0; inverse <= 1; ++inverse) {
for (int i = 0; i < ergun_rounds; ++i) {
for (int j = 0; j < fft_size * 4; ++j) {
a[j] = uniform_random();
b[j] = uniform_random();
}
run_fft(a, a_out, fft_size, inverse);
run_fft(b, b_out, fft_size, inverse);
for (int j = 0; j < fft_size * 4; ++j) {
sum[j] = a[j] + b[j];
expected_sum_out[j] = a_out[j] + b_out[j];
}
run_fft(sum, sum_out, fft_size, inverse);
expect_equal(expected_sum_out, sum_out, 4, fft_size, 0.03, 0.0005);
}
}
}
}
// Test 2: Test that FFT(delta(i)) = 1 (where delta(i) = [1 0 0 0 ...]),
// or more specifically, test that FFT(a + delta(i)) - FFT(a) = 1.
TEST(FFTPassEffectTest, ErgunImpulseTransform) {
srand(1235);
const int max_fft_size = 64;
float a[max_fft_size * 4], b[max_fft_size * 4];
float a_out[max_fft_size * 4], b_out[max_fft_size * 4], sum_out[max_fft_size * 4], expected_sum_out[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int inverse = 0; inverse <= 1; ++inverse) {
for (int i = 0; i < ergun_rounds; ++i) {
for (int j = 0; j < fft_size * 4; ++j) {
a[j] = uniform_random();
// Compute delta(j) - a.
if (j < 4) {
b[j] = 1.0 - a[j];
} else {
b[j] = -a[j];
}
}
run_fft(a, a_out, fft_size, inverse);
run_fft(b, b_out, fft_size, inverse);
for (int j = 0; j < fft_size * 4; ++j) {
sum_out[j] = a_out[j] + b_out[j];
expected_sum_out[j] = 1.0;
}
expect_equal(expected_sum_out, sum_out, 4, fft_size, 0.025, 0.0005);
}
}
}
}
// Test 3: Test the time-shift property of the FFT, in that a circular left-shift
// multiplies the result by e^(j 2pi k/N) (linear phase adjustment).
// As fftw_test.c says, “The paper performs more tests, but this code should be
// fine too”.
TEST(FFTPassEffectTest, ErgunShiftProperty) {
srand(1236);
const int max_fft_size = 64;
float a[max_fft_size * 4], b[max_fft_size * 4];
float a_out[max_fft_size * 4], b_out[max_fft_size * 4], expected_a_out[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int inverse = 0; inverse <= 1; ++inverse) {
for (int direction = 0; direction <= 1; ++direction) {
for (int i = 0; i < ergun_rounds; ++i) {
for (int j = 0; j < fft_size * 4; ++j) {
a[j] = uniform_random();
}
// Circular shift left by one step.
for (int j = 0; j < fft_size * 4; ++j) {
b[j] = a[(j + 4) % (fft_size * 4)];
}
run_fft(a, a_out, fft_size, inverse, false, FFTPassEffect::Direction(direction));
run_fft(b, b_out, fft_size, inverse, false, FFTPassEffect::Direction(direction));
for (int j = 0; j < fft_size; ++j) {
double s = -sin(j * 2.0 * M_PI / fft_size);
double c = cos(j * 2.0 * M_PI / fft_size);
if (inverse) {
s = -s;
}
expected_a_out[j * 4 + 0] = b_out[j * 4 + 0] * c - b_out[j * 4 + 1] * s;
expected_a_out[j * 4 + 1] = b_out[j * 4 + 0] * s + b_out[j * 4 + 1] * c;
expected_a_out[j * 4 + 2] = b_out[j * 4 + 2] * c - b_out[j * 4 + 3] * s;
expected_a_out[j * 4 + 3] = b_out[j * 4 + 2] * s + b_out[j * 4 + 3] * c;
}
expect_equal(expected_a_out, a_out, 4, fft_size, 0.025, 0.0005);
}
}
}
}
}
TEST(FFTPassEffectTest, BigFFTAccuracy) {
srand(1234);
const int max_fft_size = 2048;
float in[max_fft_size * 4], out[max_fft_size * 4], out2[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int j = 0; j < fft_size * 4; ++j) {
in[j] = uniform_random();
}
run_fft(in, out, fft_size, false, true); // Forward, with normalization.
run_fft(out, out2, fft_size, true); // Reverse.
// These error bounds come from
// http://en.wikipedia.org/wiki/Fast_Fourier_transform#Accuracy_and_approximations,
// with empirically estimated epsilons. Note that the calculated
// rms in expect_equal() is divided by sqrt(N), so we compensate
// similarly here.
double max_error = 0.0009 * log2(fft_size);
double rms_limit = 0.0007 * sqrt(log2(fft_size)) / sqrt(fft_size);
expect_equal(in, out2, 4, fft_size, max_error, rms_limit);
}
}
} // namespace movit