Skip to content

Latest commit

 

History

History
48 lines (28 loc) · 3.21 KB

trie.md

File metadata and controls

48 lines (28 loc) · 3.21 KB

前缀树问题

介绍

截止目前(2020-02-04) 前缀树(字典树) 在 LeetCode 一共有 17 道题目。其中 2 道简单,8 个中等,7 个困难。

这里总结了六道题,弄懂这几道, 那么前缀树对你应该不是大问题, 希望这个专题可以帮到正在学习前缀树的你。

简单来说, 前缀树就是一个树。前缀树一般是将一系列的单词记录到树上, 如果这些单词没有公共前缀,则和直接用数组存没有任何区别。而如果有公共前缀, 则公共前缀仅会被存储一次。可以想象,如果一系列单词的公共前缀很多, 则会有效减少空间消耗。

而前缀树的意义实际上是空间换时间,这和哈希表,动态规划等的初衷是一样的。

其原理也很简单,正如我前面所言,其公共前缀仅会被存储一次,因此如果我想在一堆单词中找某个单词或者某个前缀是否出现,我无需进行完整遍历,而是遍历前缀树即可。本质上,使用前缀树和不使用前缀树减少的时间就是公共前缀的数目。也就是说,一堆单词没有公共前缀,使用前缀树没有任何意义。

知道了前缀树的作用和使用场景,接下来我们自己实现一个前缀树。关于实现可以参考 0208.implement-trie-prefix-tree

API

自己实现前缀树,首先要知道它的 api 有哪些,以及具体功能是什么。

前缀树的 api 主要有以下几个:

  • insert(word): 插入一个单词
  • search(word):查找一个单词是否存在
  • startWith(word): 查找是否存在以 word 为前缀的单词

其中 startWith 是前缀树最核心的用法,其名称前缀树就从这里而来。大家可以先拿 208 题开始,熟悉一下前缀树,然后再尝试别的题目。

图解

一个前缀树大概是这个样子:

如图每一个节点存储一个字符,然后外加一个控制信息表示是否是单词结尾,实际使用过程可能会有细微差别,不过变化不大。

以下是本专题的六道题目的题解,内容会持续更新,感谢你的关注~

相关题目