forked from PyFE/PyFENG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiasset.py
720 lines (563 loc) · 23.7 KB
/
multiasset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
import abc
import scipy.stats as spst
import warnings
import numpy as np
from itertools import product, combinations
from . import bsm
from . import norm
from . import gamma
from . import nsvh
import pyfeng.opt_abc as opt
from pyfeng.quad import NdGHQ # Not sure
class OptMaABC(opt.OptABC, abc.ABC):
n_asset = 1
rho = None
cor_m = np.diag([1.0])
cov_m = np.diag([1.0])
chol_m = np.diag([1.0])
def __init__(self, sigma, cor=None, intr=0.0, divr=0.0, is_fwd=False):
"""
Args:
sigma: model volatilities of `n_asset` assets. (n_asset, ) array
cor: correlation. If matrix with shape (n_asset, n_asset), used as it is.
If scalar, correlation matrix is constructed with all same off-diagonal values.
intr: interest rate (domestic interest rate)
divr: vector of dividend/convenience yield (foreign interest rate) 0-D or (n_asset, ) array
is_fwd: if True, treat `spot` as forward price. False by default.
"""
sigma = np.atleast_1d(sigma)
self.n_asset = len(sigma)
super().__init__(sigma, intr, divr, is_fwd)
if self.n_asset == 1:
if cor is not None:
print(f"Ignoring cor={cor} for a single asset")
self.rho = None
self.cor_m = np.array([[1.0]])
elif np.isscalar(cor):
self.cor_m = cor * np.ones((self.n_asset, self.n_asset)) + (
1.0 - cor
) * np.eye(self.n_asset)
self.rho = cor
else:
assert cor.shape == (self.n_asset, self.n_asset)
self.cor_m = cor
if self.n_asset == 2:
self.rho = cor[0, 1]
self.cov_m = sigma * self.cor_m * sigma[:, None]
self.chol_m = np.linalg.cholesky(self.cov_m)
def price(self, strike, spot, texp, cp=1):
"""
Call/put option price.
Args:
strike: strike price.
spot: spot (or forward) prices for assets.
Asset dimension should be the last, e.g. (n_asset, ) or (N, n_asset)
texp: time to expiry.
cp: 1/-1 for call/put option.
Returns:
option price
"""
return NotImplementedError
class BsmSpreadKirk(OptMaABC):
"""
Kirk's approximation for spread option.
References:
- Kirk E (1995) Correlation in the energy markets. In: Managing Energy Price Risk, First. Risk Publications, London, pp 71–78
Examples:
>>> import numpy as np
>>> import pyfeng as pf
>>> m = pf.BsmSpreadKirk((0.2, 0.3), cor=-0.5)
>>> m.price(np.arange(-2, 3) * 10, [100, 120], 1.3)
array([22.15632247, 17.18441817, 12.98974214, 9.64141666, 6.99942072])
"""
weight = np.array([1, -1])
def price(self, strike, spot, texp, cp=1):
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
fwd1 = fwd[..., 0] - np.minimum(strike, 0)
fwd2 = fwd[..., 1] + np.maximum(strike, 0)
sig1 = self.sigma[0] * fwd[..., 0] / fwd1
sig2 = self.sigma[1] * fwd[..., 1] / fwd2
sig_spd = np.sqrt(sig1 * (sig1 - 2.0 * self.rho * sig2) + sig2 ** 2)
price = bsm.Bsm.price_formula(fwd2, fwd1, sig_spd, texp, cp=cp, is_fwd=True)
return df * price
class BsmSpreadBjerksund2014(OptMaABC):
"""
Bjerksund & Stensland (2014)'s approximation for spread option.
References:
- Bjerksund P, Stensland G (2014) Closed form spread option valuation. Quantitative Finance 14:1785–1794. https://doi.org/10.1080/14697688.2011.617775
Examples:
>>> import numpy as np
>>> import pyfeng as pf
>>> m = pf.BsmSpreadBjerksund2014((0.2, 0.3), cor=-0.5)
>>> m.price(np.arange(-2, 3) * 10, [100, 120], 1.3)
array([22.13172022, 17.18304247, 12.98974214, 9.54431944, 6.80612597])
"""
weight = np.array([1, -1])
def price(self, strike, spot, texp, cp=1):
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
fwd1 = fwd[..., 0]
fwd2 = fwd[..., 1]
std11 = self.sigma[0] ** 2 * texp
std12 = self.sigma[0] * self.sigma[1] * texp
std22 = self.sigma[1] ** 2 * texp
aa = fwd2 + strike
bb = fwd2 / aa
std = np.sqrt(std11 - 2 * bb * self.rho * std12 + bb ** 2 * std22)
d3 = np.log(fwd1 / aa)
d1 = (d3 + 0.5 * std11 - bb * (self.rho * std12 - 0.5 * bb * std22)) / std
d2 = (d3 - 0.5 * std11 + self.rho * std12 + bb * (0.5 * bb - 1) * std22) / std
d3 = (d3 - 0.5 * std11 + 0.5 * bb ** 2 * std22) / std
price = cp * (
fwd1 * spst.norm.cdf(cp * d1)
- fwd2 * spst.norm.cdf(cp * d2)
- strike * spst.norm.cdf(cp * d3)
)
return df * price
class NormBasket(OptMaABC):
"""
Basket option pricing under the multiasset Bachelier model
"""
weight = None
def __init__(self, sigma, cor=None, weight=None, intr=0.0, divr=0.0, is_fwd=False):
"""
Initialize an instance for basket option.
Args:
sigma: model volatilities of `n_asset` assets. (n_asset, ) array
cor: correlation. If matrix, used as it is. (n_asset, n_asset)
If scalar, correlation matrix is constructed with all same off-diagonal values.
weight: asset weights, If None, equally weighted as 1/n_asset
If scalar, equal weights of the value
If 1-D array, uses as it is. (n_asset, )
intr: interest rate (domestic interest rate)
divr: vector of dividend/convenience yield (foreign interest rate) 0-D or (n_asset, ) array
is_fwd: if True, treat `spot` as forward price. False by default.
See Also:
init_spread()
"""
super().__init__(sigma, cor=cor, intr=intr, divr=divr, is_fwd=is_fwd)
if weight is None:
self.weight = np.ones(self.n_asset) / self.n_asset
elif np.isscalar(weight):
self.weight = np.ones(self.n_asset) * weight
else:
assert len(weight) == self.n_asset
self.weight = np.array(weight)
@classmethod
def init_spread(cls, sigma, cor=None, intr=0.0, divr=0.0, is_fwd=False):
"""
Initalize an instance for spread option pricing.
This is a special case of the initalization with weight = (1, -1)
Examples:
>>> import numpy as np
>>> import pyfeng as pf
>>> m = pf.NormSpread.init_spread((20, 30), cor=-0.5, intr=0.05)
>>> m.price(np.arange(-2, 3) * 10, [100, 120], 1.3)
array([17.95676186, 13.74646821, 10.26669936, 7.47098719, 5.29057157])
"""
return cls(sigma, cor=cor, weight=np.array([1, -1]), intr=intr, divr=divr, is_fwd=is_fwd)
def price(self, strike, spot, texp, cp=1):
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
fwd_basket = fwd @ self.weight
vol_basket = np.sqrt(self.weight @ self.cov_m @ self.weight)
price = norm.Norm.price_formula(
strike, fwd_basket, vol_basket, texp, cp=cp, is_fwd=True
)
return df * price
class BsmBasketLevy1992(NormBasket):
"""
Basket option pricing with the log-normal approximation of Levy & Turnbull (1992)
References:
- Levy E, Turnbull S (1992) Average intelligence. Risk 1992:53–57
- Krekel M, de Kock J, Korn R, Man T-K (2004) An analysis of pricing methods for basket options. Wilmott Magazine 2004:82–89
Examples:
>>> import numpy as np
>>> import pyfeng as pf
>>> strike = np.arange(50, 151, 10)
>>> m = pf.BsmBasketLevy1992(sigma=0.4*np.ones(4), cor=0.5)
>>> m.price(strike, spot=100*np.ones(4), texp=5)
array([54.34281026, 47.521086 , 41.56701301, 36.3982413 , 31.92312156,
28.05196621, 24.70229571, 21.800801 , 19.28360474, 17.09570196,
15.19005654])
"""
def price(self, strike, spot, texp, cp=1):
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
fwd_basket = fwd * self.weight
m1 = np.sum(fwd_basket, axis=-1)
m2 = np.sum(fwd_basket @ np.exp(self.cov_m * texp) * fwd_basket, axis=-1)
sig = np.sqrt(np.log(m2 / (m1 ** 2)) / texp)
price = bsm.Bsm.price_formula(strike, m1, sig, texp, cp=cp, is_fwd=True)
return df * price
class BsmBasketMilevsky1998(NormBasket):
"""
Basket option pricing with the inverse gamma distribution of Milevsky & Posner (1998)
References:
- Milevsky MA, Posner SE (1998) A Closed-Form Approximation for Valuing Basket Options. The Journal of Derivatives 5:54–61. https://doi.org/10.3905/jod.1998.408005
- Krekel M, de Kock J, Korn R, Man T-K (2004) An analysis of pricing methods for basket options. Wilmott Magazine 2004:82–89
Examples:
>>> import numpy as np
>>> import pyfeng as pf
>>> strike = np.arange(50, 151, 10)
>>> m = pf.BsmBasketMilevsky1998(sigma=0.4*np.ones(4), cor=0.5)
>>> m.price(strike, spot=100*np.ones(4), texp=5)
array([51.93069524, 44.40986 , 38.02596564, 32.67653542, 28.21560931,
24.49577509, 21.38543199, 18.77356434, 16.56909804, 14.69831445,
13.10186928])
"""
def price(self, strike, spot, texp, cp=1):
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
fwd_basket = fwd * self.weight
m1 = np.sum(fwd_basket, axis=-1)
m2 = np.sum(fwd_basket @ np.exp(self.cov_m * texp) * fwd_basket, axis=-1)
alpha = 1 / (m2 / m1 ** 2 - 1) + 2
beta = (alpha - 1) * m1
price = gamma.InvGam.price_formula(
strike, m1, texp, alpha, beta, cp=cp, is_fwd=True
)
return df * price
class BsmMax2(OptMaABC):
"""
Option on the max of two assets.
Payout = max( max(F_1, F_2) - K, 0 ) for all or max( K - max(F_1, F_2), 0 ) for put option
References:
- Rubinstein M (1991) Somewhere Over the Rainbow. Risk 1991:63–66
Examples:
>>> import numpy as np
>>> import pyfeng as pf
>>> m = pf.BsmMax2(0.2*np.ones(2), cor=0, divr=0.1, intr=0.05)
>>> m.price(strike=[90, 100, 110], spot=100*np.ones(2), texp=3)
array([15.86717049, 11.19568103, 7.71592217])
"""
m_switch = None
def __init__(self, sigma, cor=None, weight=None, intr=0.0, divr=0.0, is_fwd=False):
super().__init__(sigma, cor=cor, intr=intr, divr=divr, is_fwd=is_fwd)
self.m_switch = BsmSpreadKirk(sigma, cor, is_fwd=True)
def price(self, strike, spot, texp, cp=1):
sig = self.sigma
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
sig_std = sig * np.sqrt(texp)
spd_rho = np.sqrt(np.dot(sig, sig) - 2 * self.rho * sig[0] * sig[1])
spd_std = spd_rho * np.sqrt(texp)
# -x and y as rows
# supposed to be -log(fwd/strike) but strike is added later
xx = -np.log(fwd) / sig_std - 0.5 * sig_std
fwd_ratio = fwd[0] / fwd[1]
yy = np.log([fwd_ratio, 1 / fwd_ratio]) / spd_std + 0.5 * spd_std
rho12 = (
np.array([self.rho * sig[1] - sig[0], self.rho * sig[0] - sig[1]]) / spd_rho
)
mu0 = np.zeros(2)
cor_m1 = rho12[0] + (1 - rho12[0]) * np.eye(2)
cor_m2 = rho12[1] + (1 - rho12[1]) * np.eye(2)
strike_isscalar = np.isscalar(strike)
strike = np.atleast_1d(strike)
cp = cp * np.ones_like(strike)
n_strike = len(strike)
# this is the price of max(S1, S2) = max(S1-S2, 0) + S2
# Used that Kirk approximation strike = 0 is Margrabe's switch option price
parity = 0 if np.all(cp > 0) else self.m_switch.price(0, fwd, texp) + fwd[1]
price = np.zeros_like(strike, float)
for k in range(n_strike):
xx_ = xx + np.log(strike[k]) / sig_std
term1 = fwd[0] * (
spst.norm.cdf(yy[0])
- spst.multivariate_normal.cdf(np.array([xx_[0], yy[0]]), mu0, cor_m1)
)
term2 = fwd[1] * (
spst.norm.cdf(yy[1])
- spst.multivariate_normal.cdf(np.array([xx_[1], yy[1]]), mu0, cor_m2)
)
term3 = strike[k] * np.array(
spst.multivariate_normal.cdf(xx_ + sig_std, mu0, self.cor_m)
)
assert term1 + term2 + term3 >= strike[k]
price[k] = term1 + term2 + term3 - strike[k]
if cp[k] < 0:
price[k] += strike[k] - parity
price *= df
return price[0] if strike_isscalar else price
class BsmBasket1Bm(opt.OptABC):
"""
Multiasset BSM model for pricing basket/Spread options when all asset prices are driven by a single Brownian motion (BM).
"""
def __init__(self, sigma, weight=None, intr=0.0, divr=0.0, is_fwd=False):
"""
Args:
sigma: model volatilities of `n_asset` assets. (n_asset, )
weight: asset weights, If None, equally weighted as 1/n_asset
If scalar, equal weights of the value
If 1-D array, uses as it is. (n_asset, )
intr: interest rate (domestic interest rate)
divr: vector of dividend/convenience yield (foreign interest rate) 0-D or (n_asset, ) array
is_fwd: if True, treat `spot` as forward price. False by default.
"""
sigma = np.atleast_1d(sigma)
self.n_asset = len(sigma)
if weight is None:
self.weight = np.ones(self.n_asset) / self.n_asset
elif np.isscalar(weight):
self.weight = np.ones(self.n_asset) * weight
else:
assert len(weight) == self.n_asset
self.weight = np.array(weight)
super().__init__(sigma, intr=intr, divr=divr, is_fwd=is_fwd)
@staticmethod
def root(fac, std, strike):
"""
Calculate the root x of f(x) = sum(fac * exp(std*x)) - strike = 0 using Newton's method
Each fac and std should have the same signs so that f(x) is a monotonically increasing function.
fac: factor to the exponents. (n_asset, ) or (n_strike, n_asset). Asset takes the last dimension.
std: total standard variance. (n_asset, )
strike: strike prices. scalar or (n_asset, )
"""
assert np.all(fac * std >= 0.0)
log = np.min(fac) > 0 # Basket if log=True, spread if otherwise.
scalar_output = np.isscalar(np.sum(fac * std, axis=-1) - strike)
strike = np.atleast_1d(strike)
with np.errstate(divide="ignore", invalid="ignore"):
log_k = np.where(strike > 0, np.log(strike), 1)
# Initial guess with linearlized assmption
x = (strike - np.sum(fac, axis=-1)) / np.sum(fac * std, axis=-1)
if log:
np.fmin(x, np.amin(np.log(strike[:, None] / fac) / std, axis=-1), out=x)
else:
np.clip(x, -3, 3, out=x)
# Test x=-9 and 9 for min/max values.
y_max = np.exp(9 * std)
y_min = np.sum(fac / y_max, axis=-1) - strike
y_max = np.sum(fac * y_max, axis=-1) - strike
x[y_min >= 0] = -np.inf
x[y_max <= 0] = np.inf
ind = ~((y_min >= 0) | (y_max <= 0))
if np.all(~ind):
return x[0] if scalar_output else x
for k in range(32):
y_vec = fac * np.exp(std * x[ind, None])
y = (
np.log(np.sum(y_vec, axis=-1)) - log_k[ind]
if log
else np.sum(y_vec, axis=-1) - strike[ind]
)
dy = (
np.sum(std * y_vec, axis=-1) / np.sum(y_vec, axis=-1)
if log
else np.sum(std * y_vec, axis=-1)
)
x[ind] -= y / dy
if len(y) == 0:
print(ind, y_vec, y)
y_err_max = np.amax(np.abs(y))
if y_err_max < BsmBasket1Bm.IMPVOL_TOL:
break
if y_err_max > BsmBasket1Bm.IMPVOL_TOL:
warn_msg = (
f"root did not converge within {k} iterations: max error = {y_err_max}"
)
warnings.warn(warn_msg, Warning)
return x[0] if scalar_output else x
def price(self, strike, spot, texp, cp=1):
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
fwd_basket = fwd * self.weight
sigma_std = self.sigma * np.sqrt(texp)
cp = np.array(cp)
d2 = -cp * self.root(
fwd_basket * np.exp(-(sigma_std ** 2) / 2), sigma_std, strike
)
if np.isscalar(d2):
d1 = d2 + cp * sigma_std
else:
d1 = d2[:, None] + np.atleast_1d(cp)[:, None] * sigma_std
price = np.sum(fwd_basket * spst.norm.cdf(d1), axis=-1)
price -= strike * spst.norm.cdf(d2)
price *= cp * df
return price
class BsmBasketJsu(NormBasket):
"""
Johnson's SU distribution approximation for Basket option pricing under the multiasset BSM model.
Note: Johnson's SU distribution is the solution of NSVh with NSVh with lambda = 1.
References:
- Posner, S. E., & Milevsky, M. A. (1998). Valuing exotic options by approximating the SPD
with higher moments. The Journal of Financial Engineering, 7(2). https://ssrn.com/abstract=108539
- Choi, J., Liu, C., & Seo, B. K. (2019). Hyperbolic normal stochastic volatility model.
Journal of Futures Markets, 39(2), 186–204. https://doi.org/10.1002/fut.21967
"""
def moment_vsk(self, fwd, texp):
"""
Return variance, skewness, kurtosis for Basket options.
Args:
fwd: forward price
texp: time to expiry
Returns: variance, skewness, kurtosis of Basket options
"""
n = len(self.weight)
m1 = sum(self.weight[i] * fwd[i] for i in range(n))
m2_index = [i for i in product(np.arange(n), repeat=2)]
m2 = sum(
self.weight[i]
* self.weight[j]
* fwd[i]
* fwd[j]
* np.exp(self.sigma[i] * self.sigma[j] * self.cor_m[i][j] * texp)
for i, j in m2_index
)
m3_index = [i for i in product(np.arange(n), repeat=3)]
m3 = sum(
self.weight[i]
* self.weight[j]
* self.weight[l]
* fwd[i]
* fwd[j]
* fwd[l]
* np.exp(
sum(
self.sigma[ii] * self.sigma[jj] * self.cor_m[ii][jj]
for ii, jj in combinations(np.array([i, j, l]), 2)
)
* texp
)
for i, j, l in m3_index
)
m4_index = [i for i in product(np.arange(n), repeat=4)]
m4 = sum(
self.weight[i]
* self.weight[j]
* self.weight[l]
* self.weight[k]
* fwd[i]
* fwd[j]
* fwd[l]
* fwd[k]
* np.exp(
sum(
self.sigma[ii] * self.sigma[jj] * self.cor_m[ii][jj]
for ii, jj in combinations(np.array([i, j, l, k]), 2)
)
* texp
)
for i, j, l, k in m4_index
)
var = m2 - m1 ** 2
skew = (m3 - m1 ** 3 - 3 * m2 * m1 + 3 * m1 ** 3) / var ** (3 / 2)
kurt = (m4 - 3 * m1 ** 4 - 4 * m3 * m1 + 6 * m2 * m1 ** 2) / var ** 2
return var, skew, kurt
def price(self, strike, spot, texp, cp=1):
"""
Basket options price.
Args:
strike: strike price
spot: spot price
texp: time to expiry
cp: 1/-1 for call/put option
Returns: Basket options price
"""
fwd, df, _ = self._fwd_factor(spot, texp)
assert fwd.shape[-1] == self.n_asset
fwd_basket = fwd @ self.weight
var, skew, kurt = self.moment_vsk(fwd, texp)
m = nsvh.Nsvh1(sigma=self.sigma)
m.calibrate_vsk(var, skew, kurt - 3, texp, setval=True)
price = m.price(strike, fwd_basket, texp, cp)
return df * price
class BsmBasketChoi2018(NormBasket):
"""
Choi (2018)'s pricing method for Basket/Spread/Asian options
References
- Choi J (2018) Sum of all Black-Scholes-Merton models: An efficient pricing method for spread, basket, and Asian options. Journal of Futures Markets 38:627–644. https://doi.org/10.1002/fut.21909
"""
n_quad = None
lam = 4.0
@classmethod
def init_lowerbound(cls, sigma, cor=None, weight=None, intr=0.0, divr=0.0, is_fwd=False):
m = cls(sigma, cor=cor, weight=weight, intr=intr, divr=divr, is_fwd=is_fwd)
m.n_quad = 0
return m
def set_num_params(self, n_quad=None, lam=3.0):
self.n_quad = n_quad
self.lam = lam
@staticmethod
def householder(vv0):
"""
Returns a Householder reflection (orthonormal matrix) that maps (1,0,...0) to vv0
Args:
vv0: vector
Returns:
Reflection matrix
References
- https://en.wikipedia.org/wiki/Householder_transformation
"""
vv1 = vv0 / np.linalg.norm(vv0)
vv1[0] -= 1.0
if abs(vv1[0]) < np.finfo(float).eps*100:
return np.eye(len(vv1))
else:
return np.eye(len(vv1)) + vv1[:, None] * vv1 / vv1[0]
def v_mat(self, fwd):
"""
Construct the V matrix
Args:
fwd: forward vector of assets
Returns:
V matrix
"""
fwd_wts_unit = fwd * self.weight
fwd_wts_unit /= np.linalg.norm(fwd_wts_unit)
v1 = self.cov_m @ fwd_wts_unit
v1 /= np.sqrt(np.sum(v1 * fwd_wts_unit))
thres = 0.01 * self.sigma
idx = (np.sign(fwd_wts_unit) * v1 < thres)
if np.any(idx):
v1[idx] = (np.sign(fwd_wts_unit) * thres)[idx]
q1 = np.linalg.solve(self.chol_m, v1)
q1norm = np.linalg.norm(q1)
q1 /= q1norm
v1 /= q1norm
else:
q1 = self.chol_m.T @ fwd_wts_unit
q1 /= np.linalg.norm(q1)
r_mat = self.householder(q1)
chol_r_mat = self.chol_m @ r_mat[:, 1:]
svd_u, svd_d, _ = np.linalg.svd(chol_r_mat, full_matrices=False)
v_mat = np.hstack((v1[:, None], svd_u @ np.diag(svd_d)))
len_scale = svd_d / np.sum(fwd_wts_unit * v1)
if self.n_quad is None:
n_quad = np.rint(self.lam * len_scale + 1).astype(int)
else:
n_quad = self.n_quad
return v_mat, n_quad
def v1_fwd_weight(self, fwd, texp):
"""
Construct v1, forward array, and weights
Args:
fwd: forward vector of assets
texp: time to expiry
Returns:
(v1, f_k, ww)
"""
v_mat, n_quad = self.v_mat(fwd)
v_mat *= np.sqrt(texp)
v1 = v_mat[:, 0]
if n_quad == 0:
# 1 factor BM model for lower bound
f_k = np.ones((1, self.n_asset))
ww = np.array([1.0])
else:
v_mat = v_mat[:, 1:len(n_quad)+1]
quad = NdGHQ(n_quad)
zz, ww = quad.z_vec_weight()
f_k = np.exp(zz @ v_mat.T - 0.5*np.sum(v_mat**2, axis=1))
return v1, f_k, ww
def price(self, strike, spot, texp, cp=1):
fwd, df, _ = self._fwd_factor(spot, texp)
v1, f_k, ww = self.v1_fwd_weight(fwd, texp)
m_1bm = BsmBasket1Bm(sigma=v1, weight=self.weight)
price = np.zeros_like(strike, dtype=float)
for k, f_k_row in enumerate(f_k):
price1 = m_1bm.price(strike, f_k_row * fwd, texp=1.0, cp=cp)
price += price1 * ww[k]
return df * price