forked from facebook/rocksdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inlineskiplist.h
997 lines (898 loc) · 35.2 KB
/
inlineskiplist.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. Use of
// this source code is governed by a BSD-style license that can be found
// in the LICENSE file. See the AUTHORS file for names of contributors.
//
// InlineSkipList is derived from SkipList (skiplist.h), but it optimizes
// the memory layout by requiring that the key storage be allocated through
// the skip list instance. For the common case of SkipList<const char*,
// Cmp> this saves 1 pointer per skip list node and gives better cache
// locality, at the expense of wasted padding from using AllocateAligned
// instead of Allocate for the keys. The unused padding will be from
// 0 to sizeof(void*)-1 bytes, and the space savings are sizeof(void*)
// bytes, so despite the padding the space used is always less than
// SkipList<const char*, ..>.
//
// Thread safety -------------
//
// Writes via Insert require external synchronization, most likely a mutex.
// InsertConcurrently can be safely called concurrently with reads and
// with other concurrent inserts. Reads require a guarantee that the
// InlineSkipList will not be destroyed while the read is in progress.
// Apart from that, reads progress without any internal locking or
// synchronization.
//
// Invariants:
//
// (1) Allocated nodes are never deleted until the InlineSkipList is
// destroyed. This is trivially guaranteed by the code since we never
// delete any skip list nodes.
//
// (2) The contents of a Node except for the next/prev pointers are
// immutable after the Node has been linked into the InlineSkipList.
// Only Insert() modifies the list, and it is careful to initialize a
// node and use release-stores to publish the nodes in one or more lists.
//
// ... prev vs. next pointer ordering ...
//
#pragma once
#include <assert.h>
#include <stdlib.h>
#include <algorithm>
#include <atomic>
#include <type_traits>
#include "memory/allocator.h"
#include "port/likely.h"
#include "port/port.h"
#include "rocksdb/slice.h"
#include "util/coding.h"
#include "util/random.h"
namespace rocksdb {
template <class Comparator>
class InlineSkipList {
private:
struct Node;
struct Splice;
public:
using DecodedKey = \
typename std::remove_reference<Comparator>::type::DecodedType;
static const uint16_t kMaxPossibleHeight = 32;
// Create a new InlineSkipList object that will use "cmp" for comparing
// keys, and will allocate memory using "*allocator". Objects allocated
// in the allocator must remain allocated for the lifetime of the
// skiplist object.
explicit InlineSkipList(Comparator cmp, Allocator* allocator,
int32_t max_height = 12,
int32_t branching_factor = 4);
// No copying allowed
InlineSkipList(const InlineSkipList&) = delete;
InlineSkipList& operator=(const InlineSkipList&) = delete;
// Allocates a key and a skip-list node, returning a pointer to the key
// portion of the node. This method is thread-safe if the allocator
// is thread-safe.
char* AllocateKey(size_t key_size);
// Allocate a splice using allocator.
Splice* AllocateSplice();
// Allocate a splice on heap.
Splice* AllocateSpliceOnHeap();
// Inserts a key allocated by AllocateKey, after the actual key value
// has been filled in.
//
// REQUIRES: nothing that compares equal to key is currently in the list.
// REQUIRES: no concurrent calls to any of inserts.
bool Insert(const char* key);
// Inserts a key allocated by AllocateKey with a hint of last insert
// position in the skip-list. If hint points to nullptr, a new hint will be
// populated, which can be used in subsequent calls.
//
// It can be used to optimize the workload where there are multiple groups
// of keys, and each key is likely to insert to a location close to the last
// inserted key in the same group. One example is sequential inserts.
//
// REQUIRES: nothing that compares equal to key is currently in the list.
// REQUIRES: no concurrent calls to any of inserts.
bool InsertWithHint(const char* key, void** hint);
// Like InsertConcurrently, but with a hint
//
// REQUIRES: nothing that compares equal to key is currently in the list.
// REQUIRES: no concurrent calls that use same hint
bool InsertWithHintConcurrently(const char* key, void** hint);
// Like Insert, but external synchronization is not required.
bool InsertConcurrently(const char* key);
// Inserts a node into the skip list. key must have been allocated by
// AllocateKey and then filled in by the caller. If UseCAS is true,
// then external synchronization is not required, otherwise this method
// may not be called concurrently with any other insertions.
//
// Regardless of whether UseCAS is true, the splice must be owned
// exclusively by the current thread. If allow_partial_splice_fix is
// true, then the cost of insertion is amortized O(log D), where D is
// the distance from the splice to the inserted key (measured as the
// number of intervening nodes). Note that this bound is very good for
// sequential insertions! If allow_partial_splice_fix is false then
// the existing splice will be ignored unless the current key is being
// inserted immediately after the splice. allow_partial_splice_fix ==
// false has worse running time for the non-sequential case O(log N),
// but a better constant factor.
template <bool UseCAS>
bool Insert(const char* key, Splice* splice, bool allow_partial_splice_fix);
// Returns true iff an entry that compares equal to key is in the list.
bool Contains(const char* key) const;
// Return estimated number of entries smaller than `key`.
uint64_t EstimateCount(const char* key) const;
// Validate correctness of the skip-list.
void TEST_Validate() const;
// Iteration over the contents of a skip list
class Iterator {
public:
// Initialize an iterator over the specified list.
// The returned iterator is not valid.
explicit Iterator(const InlineSkipList* list);
// Change the underlying skiplist used for this iterator
// This enables us not changing the iterator without deallocating
// an old one and then allocating a new one
void SetList(const InlineSkipList* list);
// Returns true iff the iterator is positioned at a valid node.
bool Valid() const;
// Returns the key at the current position.
// REQUIRES: Valid()
const char* key() const;
// Advances to the next position.
// REQUIRES: Valid()
void Next();
// Advances to the previous position.
// REQUIRES: Valid()
void Prev();
// Advance to the first entry with a key >= target
void Seek(const char* target);
// Retreat to the last entry with a key <= target
void SeekForPrev(const char* target);
// Position at the first entry in list.
// Final state of iterator is Valid() iff list is not empty.
void SeekToFirst();
// Position at the last entry in list.
// Final state of iterator is Valid() iff list is not empty.
void SeekToLast();
private:
const InlineSkipList* list_;
Node* node_;
// Intentionally copyable
};
private:
const uint16_t kMaxHeight_;
const uint16_t kBranching_;
const uint32_t kScaledInverseBranching_;
Allocator* const allocator_; // Allocator used for allocations of nodes
// Immutable after construction
Comparator const compare_;
Node* const head_;
// Modified only by Insert(). Read racily by readers, but stale
// values are ok.
std::atomic<int> max_height_; // Height of the entire list
// seq_splice_ is a Splice used for insertions in the non-concurrent
// case. It caches the prev and next found during the most recent
// non-concurrent insertion.
Splice* seq_splice_;
inline int GetMaxHeight() const {
return max_height_.load(std::memory_order_relaxed);
}
int RandomHeight();
Node* AllocateNode(size_t key_size, int height);
bool Equal(const char* a, const char* b) const {
return (compare_(a, b) == 0);
}
bool LessThan(const char* a, const char* b) const {
return (compare_(a, b) < 0);
}
// Return true if key is greater than the data stored in "n". Null n
// is considered infinite. n should not be head_.
bool KeyIsAfterNode(const char* key, Node* n) const;
bool KeyIsAfterNode(const DecodedKey& key, Node* n) const;
// Returns the earliest node with a key >= key.
// Return nullptr if there is no such node.
Node* FindGreaterOrEqual(const char* key) const;
// Return the latest node with a key < key.
// Return head_ if there is no such node.
// Fills prev[level] with pointer to previous node at "level" for every
// level in [0..max_height_-1], if prev is non-null.
Node* FindLessThan(const char* key, Node** prev = nullptr) const;
// Return the latest node with a key < key on bottom_level. Start searching
// from root node on the level below top_level.
// Fills prev[level] with pointer to previous node at "level" for every
// level in [bottom_level..top_level-1], if prev is non-null.
Node* FindLessThan(const char* key, Node** prev, Node* root, int top_level,
int bottom_level) const;
// Return the last node in the list.
// Return head_ if list is empty.
Node* FindLast() const;
// Traverses a single level of the list, setting *out_prev to the last
// node before the key and *out_next to the first node after. Assumes
// that the key is not present in the skip list. On entry, before should
// point to a node that is before the key, and after should point to
// a node that is after the key. after should be nullptr if a good after
// node isn't conveniently available.
template<bool prefetch_before>
void FindSpliceForLevel(const DecodedKey& key, Node* before, Node* after, int level,
Node** out_prev, Node** out_next);
// Recomputes Splice levels from highest_level (inclusive) down to
// lowest_level (inclusive).
void RecomputeSpliceLevels(const DecodedKey& key, Splice* splice,
int recompute_level);
};
// Implementation details follow
template <class Comparator>
struct InlineSkipList<Comparator>::Splice {
// The invariant of a Splice is that prev_[i+1].key <= prev_[i].key <
// next_[i].key <= next_[i+1].key for all i. That means that if a
// key is bracketed by prev_[i] and next_[i] then it is bracketed by
// all higher levels. It is _not_ required that prev_[i]->Next(i) ==
// next_[i] (it probably did at some point in the past, but intervening
// or concurrent operations might have inserted nodes in between).
int height_ = 0;
Node** prev_;
Node** next_;
};
// The Node data type is more of a pointer into custom-managed memory than
// a traditional C++ struct. The key is stored in the bytes immediately
// after the struct, and the next_ pointers for nodes with height > 1 are
// stored immediately _before_ the struct. This avoids the need to include
// any pointer or sizing data, which reduces per-node memory overheads.
template <class Comparator>
struct InlineSkipList<Comparator>::Node {
// Stores the height of the node in the memory location normally used for
// next_[0]. This is used for passing data from AllocateKey to Insert.
void StashHeight(const int height) {
assert(sizeof(int) <= sizeof(next_[0]));
memcpy(static_cast<void*>(&next_[0]), &height, sizeof(int));
}
// Retrieves the value passed to StashHeight. Undefined after a call
// to SetNext or NoBarrier_SetNext.
int UnstashHeight() const {
int rv;
memcpy(&rv, &next_[0], sizeof(int));
return rv;
}
const char* Key() const { return reinterpret_cast<const char*>(&next_[1]); }
// Accessors/mutators for links. Wrapped in methods so we can add
// the appropriate barriers as necessary, and perform the necessary
// addressing trickery for storing links below the Node in memory.
Node* Next(int n) {
assert(n >= 0);
// Use an 'acquire load' so that we observe a fully initialized
// version of the returned Node.
return ((&next_[0] - n)->load(std::memory_order_acquire));
}
void SetNext(int n, Node* x) {
assert(n >= 0);
// Use a 'release store' so that anybody who reads through this
// pointer observes a fully initialized version of the inserted node.
(&next_[0] - n)->store(x, std::memory_order_release);
}
bool CASNext(int n, Node* expected, Node* x) {
assert(n >= 0);
return (&next_[0] - n)->compare_exchange_strong(expected, x);
}
// No-barrier variants that can be safely used in a few locations.
Node* NoBarrier_Next(int n) {
assert(n >= 0);
return (&next_[0] - n)->load(std::memory_order_relaxed);
}
void NoBarrier_SetNext(int n, Node* x) {
assert(n >= 0);
(&next_[0] - n)->store(x, std::memory_order_relaxed);
}
// Insert node after prev on specific level.
void InsertAfter(Node* prev, int level) {
// NoBarrier_SetNext() suffices since we will add a barrier when
// we publish a pointer to "this" in prev.
NoBarrier_SetNext(level, prev->NoBarrier_Next(level));
prev->SetNext(level, this);
}
private:
// next_[0] is the lowest level link (level 0). Higher levels are
// stored _earlier_, so level 1 is at next_[-1].
std::atomic<Node*> next_[1];
};
template <class Comparator>
inline InlineSkipList<Comparator>::Iterator::Iterator(
const InlineSkipList* list) {
SetList(list);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::SetList(
const InlineSkipList* list) {
list_ = list;
node_ = nullptr;
}
template <class Comparator>
inline bool InlineSkipList<Comparator>::Iterator::Valid() const {
return node_ != nullptr;
}
template <class Comparator>
inline const char* InlineSkipList<Comparator>::Iterator::key() const {
assert(Valid());
return node_->Key();
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::Next() {
assert(Valid());
node_ = node_->Next(0);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::Prev() {
// Instead of using explicit "prev" links, we just search for the
// last node that falls before key.
assert(Valid());
node_ = list_->FindLessThan(node_->Key());
if (node_ == list_->head_) {
node_ = nullptr;
}
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::Seek(const char* target) {
node_ = list_->FindGreaterOrEqual(target);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::SeekForPrev(
const char* target) {
Seek(target);
if (!Valid()) {
SeekToLast();
}
while (Valid() && list_->LessThan(target, key())) {
Prev();
}
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::SeekToFirst() {
node_ = list_->head_->Next(0);
}
template <class Comparator>
inline void InlineSkipList<Comparator>::Iterator::SeekToLast() {
node_ = list_->FindLast();
if (node_ == list_->head_) {
node_ = nullptr;
}
}
template <class Comparator>
int InlineSkipList<Comparator>::RandomHeight() {
auto rnd = Random::GetTLSInstance();
// Increase height with probability 1 in kBranching
int height = 1;
while (height < kMaxHeight_ && height < kMaxPossibleHeight &&
rnd->Next() < kScaledInverseBranching_) {
height++;
}
assert(height > 0);
assert(height <= kMaxHeight_);
assert(height <= kMaxPossibleHeight);
return height;
}
template <class Comparator>
bool InlineSkipList<Comparator>::KeyIsAfterNode(const char* key,
Node* n) const {
// nullptr n is considered infinite
assert(n != head_);
return (n != nullptr) && (compare_(n->Key(), key) < 0);
}
template <class Comparator>
bool InlineSkipList<Comparator>::KeyIsAfterNode(const DecodedKey& key,
Node* n) const {
// nullptr n is considered infinite
assert(n != head_);
return (n != nullptr) && (compare_(n->Key(), key) < 0);
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindGreaterOrEqual(const char* key) const {
// Note: It looks like we could reduce duplication by implementing
// this function as FindLessThan(key)->Next(0), but we wouldn't be able
// to exit early on equality and the result wouldn't even be correct.
// A concurrent insert might occur after FindLessThan(key) but before
// we get a chance to call Next(0).
Node* x = head_;
int level = GetMaxHeight() - 1;
Node* last_bigger = nullptr;
const DecodedKey key_decoded = compare_.decode_key(key);
while (true) {
Node* next = x->Next(level);
if (next != nullptr) {
PREFETCH(next->Next(level), 0, 1);
}
// Make sure the lists are sorted
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
// Make sure we haven't overshot during our search
assert(x == head_ || KeyIsAfterNode(key_decoded, x));
int cmp = (next == nullptr || next == last_bigger)
? 1
: compare_(next->Key(), key_decoded);
if (cmp == 0 || (cmp > 0 && level == 0)) {
return next;
} else if (cmp < 0) {
// Keep searching in this list
x = next;
} else {
// Switch to next list, reuse compare_() result
last_bigger = next;
level--;
}
}
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev) const {
return FindLessThan(key, prev, head_, GetMaxHeight(), 0);
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev,
Node* root, int top_level,
int bottom_level) const {
assert(top_level > bottom_level);
int level = top_level - 1;
Node* x = root;
// KeyIsAfter(key, last_not_after) is definitely false
Node* last_not_after = nullptr;
const DecodedKey key_decoded = compare_.decode_key(key);
while (true) {
assert(x != nullptr);
Node* next = x->Next(level);
if (next != nullptr) {
PREFETCH(next->Next(level), 0, 1);
}
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
assert(x == head_ || KeyIsAfterNode(key_decoded, x));
if (next != last_not_after && KeyIsAfterNode(key_decoded, next)) {
// Keep searching in this list
assert(next != nullptr);
x = next;
} else {
if (prev != nullptr) {
prev[level] = x;
}
if (level == bottom_level) {
return x;
} else {
// Switch to next list, reuse KeyIsAfterNode() result
last_not_after = next;
level--;
}
}
}
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::FindLast() const {
Node* x = head_;
int level = GetMaxHeight() - 1;
while (true) {
Node* next = x->Next(level);
if (next == nullptr) {
if (level == 0) {
return x;
} else {
// Switch to next list
level--;
}
} else {
x = next;
}
}
}
template <class Comparator>
uint64_t InlineSkipList<Comparator>::EstimateCount(const char* key) const {
uint64_t count = 0;
Node* x = head_;
int level = GetMaxHeight() - 1;
const DecodedKey key_decoded = compare_.decode_key(key);
while (true) {
assert(x == head_ || compare_(x->Key(), key_decoded) < 0);
Node* next = x->Next(level);
if (next != nullptr) {
PREFETCH(next->Next(level), 0, 1);
}
if (next == nullptr || compare_(next->Key(), key_decoded) >= 0) {
if (level == 0) {
return count;
} else {
// Switch to next list
count *= kBranching_;
level--;
}
} else {
x = next;
count++;
}
}
}
template <class Comparator>
InlineSkipList<Comparator>::InlineSkipList(const Comparator cmp,
Allocator* allocator,
int32_t max_height,
int32_t branching_factor)
: kMaxHeight_(static_cast<uint16_t>(max_height)),
kBranching_(static_cast<uint16_t>(branching_factor)),
kScaledInverseBranching_((Random::kMaxNext + 1) / kBranching_),
allocator_(allocator),
compare_(cmp),
head_(AllocateNode(0, max_height)),
max_height_(1),
seq_splice_(AllocateSplice()) {
assert(max_height > 0 && kMaxHeight_ == static_cast<uint32_t>(max_height));
assert(branching_factor > 1 &&
kBranching_ == static_cast<uint32_t>(branching_factor));
assert(kScaledInverseBranching_ > 0);
for (int i = 0; i < kMaxHeight_; ++i) {
head_->SetNext(i, nullptr);
}
}
template <class Comparator>
char* InlineSkipList<Comparator>::AllocateKey(size_t key_size) {
return const_cast<char*>(AllocateNode(key_size, RandomHeight())->Key());
}
template <class Comparator>
typename InlineSkipList<Comparator>::Node*
InlineSkipList<Comparator>::AllocateNode(size_t key_size, int height) {
auto prefix = sizeof(std::atomic<Node*>) * (height - 1);
// prefix is space for the height - 1 pointers that we store before
// the Node instance (next_[-(height - 1) .. -1]). Node starts at
// raw + prefix, and holds the bottom-mode (level 0) skip list pointer
// next_[0]. key_size is the bytes for the key, which comes just after
// the Node.
char* raw = allocator_->AllocateAligned(prefix + sizeof(Node) + key_size);
Node* x = reinterpret_cast<Node*>(raw + prefix);
// Once we've linked the node into the skip list we don't actually need
// to know its height, because we can implicitly use the fact that we
// traversed into a node at level h to known that h is a valid level
// for that node. We need to convey the height to the Insert step,
// however, so that it can perform the proper links. Since we're not
// using the pointers at the moment, StashHeight temporarily borrow
// storage from next_[0] for that purpose.
x->StashHeight(height);
return x;
}
template <class Comparator>
typename InlineSkipList<Comparator>::Splice*
InlineSkipList<Comparator>::AllocateSplice() {
// size of prev_ and next_
size_t array_size = sizeof(Node*) * (kMaxHeight_ + 1);
char* raw = allocator_->AllocateAligned(sizeof(Splice) + array_size * 2);
Splice* splice = reinterpret_cast<Splice*>(raw);
splice->height_ = 0;
splice->prev_ = reinterpret_cast<Node**>(raw + sizeof(Splice));
splice->next_ = reinterpret_cast<Node**>(raw + sizeof(Splice) + array_size);
return splice;
}
template <class Comparator>
typename InlineSkipList<Comparator>::Splice*
InlineSkipList<Comparator>::AllocateSpliceOnHeap() {
size_t array_size = sizeof(Node*) * (kMaxHeight_ + 1);
char* raw = new char[sizeof(Splice) + array_size * 2];
Splice* splice = reinterpret_cast<Splice*>(raw);
splice->height_ = 0;
splice->prev_ = reinterpret_cast<Node**>(raw + sizeof(Splice));
splice->next_ = reinterpret_cast<Node**>(raw + sizeof(Splice) + array_size);
return splice;
}
template <class Comparator>
bool InlineSkipList<Comparator>::Insert(const char* key) {
return Insert<false>(key, seq_splice_, false);
}
template <class Comparator>
bool InlineSkipList<Comparator>::InsertConcurrently(const char* key) {
Node* prev[kMaxPossibleHeight];
Node* next[kMaxPossibleHeight];
Splice splice;
splice.prev_ = prev;
splice.next_ = next;
return Insert<true>(key, &splice, false);
}
template <class Comparator>
bool InlineSkipList<Comparator>::InsertWithHint(const char* key, void** hint) {
assert(hint != nullptr);
Splice* splice = reinterpret_cast<Splice*>(*hint);
if (splice == nullptr) {
splice = AllocateSplice();
*hint = reinterpret_cast<void*>(splice);
}
return Insert<false>(key, splice, true);
}
template <class Comparator>
bool InlineSkipList<Comparator>::InsertWithHintConcurrently(const char* key,
void** hint) {
assert(hint != nullptr);
Splice* splice = reinterpret_cast<Splice*>(*hint);
if (splice == nullptr) {
splice = AllocateSpliceOnHeap();
*hint = reinterpret_cast<void*>(splice);
}
return Insert<true>(key, splice, true);
}
template <class Comparator>
template <bool prefetch_before>
void InlineSkipList<Comparator>::FindSpliceForLevel(const DecodedKey& key,
Node* before, Node* after,
int level, Node** out_prev,
Node** out_next) {
while (true) {
Node* next = before->Next(level);
if (next != nullptr) {
PREFETCH(next->Next(level), 0, 1);
}
if (prefetch_before == true) {
if (next != nullptr && level>0) {
PREFETCH(next->Next(level-1), 0, 1);
}
}
assert(before == head_ || next == nullptr ||
KeyIsAfterNode(next->Key(), before));
assert(before == head_ || KeyIsAfterNode(key, before));
if (next == after || !KeyIsAfterNode(key, next)) {
// found it
*out_prev = before;
*out_next = next;
return;
}
before = next;
}
}
template <class Comparator>
void InlineSkipList<Comparator>::RecomputeSpliceLevels(const DecodedKey& key,
Splice* splice,
int recompute_level) {
assert(recompute_level > 0);
assert(recompute_level <= splice->height_);
for (int i = recompute_level - 1; i >= 0; --i) {
FindSpliceForLevel<true>(key, splice->prev_[i + 1], splice->next_[i + 1], i,
&splice->prev_[i], &splice->next_[i]);
}
}
template <class Comparator>
template <bool UseCAS>
bool InlineSkipList<Comparator>::Insert(const char* key, Splice* splice,
bool allow_partial_splice_fix) {
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
const DecodedKey key_decoded = compare_.decode_key(key);
int height = x->UnstashHeight();
assert(height >= 1 && height <= kMaxHeight_);
int max_height = max_height_.load(std::memory_order_relaxed);
while (height > max_height) {
if (max_height_.compare_exchange_weak(max_height, height)) {
// successfully updated it
max_height = height;
break;
}
// else retry, possibly exiting the loop because somebody else
// increased it
}
assert(max_height <= kMaxPossibleHeight);
int recompute_height = 0;
if (splice->height_ < max_height) {
// Either splice has never been used or max_height has grown since
// last use. We could potentially fix it in the latter case, but
// that is tricky.
splice->prev_[max_height] = head_;
splice->next_[max_height] = nullptr;
splice->height_ = max_height;
recompute_height = max_height;
} else {
// Splice is a valid proper-height splice that brackets some
// key, but does it bracket this one? We need to validate it and
// recompute a portion of the splice (levels 0..recompute_height-1)
// that is a superset of all levels that don't bracket the new key.
// Several choices are reasonable, because we have to balance the work
// saved against the extra comparisons required to validate the Splice.
//
// One strategy is just to recompute all of orig_splice_height if the
// bottom level isn't bracketing. This pessimistically assumes that
// we will either get a perfect Splice hit (increasing sequential
// inserts) or have no locality.
//
// Another strategy is to walk up the Splice's levels until we find
// a level that brackets the key. This strategy lets the Splice
// hint help for other cases: it turns insertion from O(log N) into
// O(log D), where D is the number of nodes in between the key that
// produced the Splice and the current insert (insertion is aided
// whether the new key is before or after the splice). If you have
// a way of using a prefix of the key to map directly to the closest
// Splice out of O(sqrt(N)) Splices and we make it so that splices
// can also be used as hints during read, then we end up with Oshman's
// and Shavit's SkipTrie, which has O(log log N) lookup and insertion
// (compare to O(log N) for skip list).
//
// We control the pessimistic strategy with allow_partial_splice_fix.
// A good strategy is probably to be pessimistic for seq_splice_,
// optimistic if the caller actually went to the work of providing
// a Splice.
while (recompute_height < max_height) {
if (splice->prev_[recompute_height]->Next(recompute_height) !=
splice->next_[recompute_height]) {
// splice isn't tight at this level, there must have been some inserts
// to this
// location that didn't update the splice. We might only be a little
// stale, but if
// the splice is very stale it would be O(N) to fix it. We haven't used
// up any of
// our budget of comparisons, so always move up even if we are
// pessimistic about
// our chances of success.
++recompute_height;
} else if (splice->prev_[recompute_height] != head_ &&
!KeyIsAfterNode(key_decoded,
splice->prev_[recompute_height])) {
// key is from before splice
if (allow_partial_splice_fix) {
// skip all levels with the same node without more comparisons
Node* bad = splice->prev_[recompute_height];
while (splice->prev_[recompute_height] == bad) {
++recompute_height;
}
} else {
// we're pessimistic, recompute everything
recompute_height = max_height;
}
} else if (KeyIsAfterNode(key_decoded,
splice->next_[recompute_height])) {
// key is from after splice
if (allow_partial_splice_fix) {
Node* bad = splice->next_[recompute_height];
while (splice->next_[recompute_height] == bad) {
++recompute_height;
}
} else {
recompute_height = max_height;
}
} else {
// this level brackets the key, we won!
break;
}
}
}
assert(recompute_height <= max_height);
if (recompute_height > 0) {
RecomputeSpliceLevels(key_decoded, splice, recompute_height);
}
bool splice_is_valid = true;
if (UseCAS) {
for (int i = 0; i < height; ++i) {
while (true) {
// Checking for duplicate keys on the level 0 is sufficient
if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
compare_(x->Key(), splice->next_[i]->Key()) >= 0)) {
// duplicate key
return false;
}
if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
compare_(splice->prev_[i]->Key(), x->Key()) >= 0)) {
// duplicate key
return false;
}
assert(splice->next_[i] == nullptr ||
compare_(x->Key(), splice->next_[i]->Key()) < 0);
assert(splice->prev_[i] == head_ ||
compare_(splice->prev_[i]->Key(), x->Key()) < 0);
x->NoBarrier_SetNext(i, splice->next_[i]);
if (splice->prev_[i]->CASNext(i, splice->next_[i], x)) {
// success
break;
}
// CAS failed, we need to recompute prev and next. It is unlikely
// to be helpful to try to use a different level as we redo the
// search, because it should be unlikely that lots of nodes have
// been inserted between prev[i] and next[i]. No point in using
// next[i] as the after hint, because we know it is stale.
FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
&splice->prev_[i], &splice->next_[i]);
// Since we've narrowed the bracket for level i, we might have
// violated the Splice constraint between i and i-1. Make sure
// we recompute the whole thing next time.
if (i > 0) {
splice_is_valid = false;
}
}
}
} else {
for (int i = 0; i < height; ++i) {
if (i >= recompute_height &&
splice->prev_[i]->Next(i) != splice->next_[i]) {
FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
&splice->prev_[i], &splice->next_[i]);
}
// Checking for duplicate keys on the level 0 is sufficient
if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
compare_(x->Key(), splice->next_[i]->Key()) >= 0)) {
// duplicate key
return false;
}
if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
compare_(splice->prev_[i]->Key(), x->Key()) >= 0)) {
// duplicate key
return false;
}
assert(splice->next_[i] == nullptr ||
compare_(x->Key(), splice->next_[i]->Key()) < 0);
assert(splice->prev_[i] == head_ ||
compare_(splice->prev_[i]->Key(), x->Key()) < 0);
assert(splice->prev_[i]->Next(i) == splice->next_[i]);
x->NoBarrier_SetNext(i, splice->next_[i]);
splice->prev_[i]->SetNext(i, x);
}
}
if (splice_is_valid) {
for (int i = 0; i < height; ++i) {
splice->prev_[i] = x;
}
assert(splice->prev_[splice->height_] == head_);
assert(splice->next_[splice->height_] == nullptr);
for (int i = 0; i < splice->height_; ++i) {
assert(splice->next_[i] == nullptr ||
compare_(key, splice->next_[i]->Key()) < 0);
assert(splice->prev_[i] == head_ ||
compare_(splice->prev_[i]->Key(), key) <= 0);
assert(splice->prev_[i + 1] == splice->prev_[i] ||
splice->prev_[i + 1] == head_ ||
compare_(splice->prev_[i + 1]->Key(), splice->prev_[i]->Key()) <
0);
assert(splice->next_[i + 1] == splice->next_[i] ||
splice->next_[i + 1] == nullptr ||
compare_(splice->next_[i]->Key(), splice->next_[i + 1]->Key()) <
0);
}
} else {
splice->height_ = 0;
}
return true;
}
template <class Comparator>
bool InlineSkipList<Comparator>::Contains(const char* key) const {
Node* x = FindGreaterOrEqual(key);
if (x != nullptr && Equal(key, x->Key())) {
return true;
} else {
return false;
}
}
template <class Comparator>
void InlineSkipList<Comparator>::TEST_Validate() const {
// Interate over all levels at the same time, and verify nodes appear in
// the right order, and nodes appear in upper level also appear in lower
// levels.
Node* nodes[kMaxPossibleHeight];
int max_height = GetMaxHeight();
assert(max_height > 0);
for (int i = 0; i < max_height; i++) {
nodes[i] = head_;
}
while (nodes[0] != nullptr) {
Node* l0_next = nodes[0]->Next(0);
if (l0_next == nullptr) {
break;
}
assert(nodes[0] == head_ || compare_(nodes[0]->Key(), l0_next->Key()) < 0);
nodes[0] = l0_next;
int i = 1;
while (i < max_height) {
Node* next = nodes[i]->Next(i);
if (next == nullptr) {
break;
}
auto cmp = compare_(nodes[0]->Key(), next->Key());
assert(cmp <= 0);
if (cmp == 0) {
assert(next == nodes[0]);
nodes[i] = next;
} else {
break;
}
i++;
}
}
for (int i = 1; i < max_height; i++) {
assert(nodes[i] != nullptr && nodes[i]->Next(i) == nullptr);
}
}
} // namespace rocksdb