-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_script_predict.py
62 lines (48 loc) · 1.73 KB
/
run_script_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Script for running a full train and prediction run
from common_utils import train_and_predict, get_device
from data_prep import get_preprocessed_data
from models import SNLI_GRU
from torch.optim import Adam
from torch.nn import Sequential, Linear, ReLU, Dropout
import pickle
# Best hyperparameters
hidden_size = 200
layers = 3
inp_size = hidden_size * layers * 2 * 2 # bidirectional * (premise+hypothesis)
first_hid_size = int(inp_size / 2)
sec_hid_size = int(inp_size / 4)
learning_rate = 1e-3
seq = Sequential(
Linear(inp_size, first_hid_size),
ReLU(),
Dropout(0.2),
Linear(first_hid_size, sec_hid_size),
ReLU(),
Dropout(0.2),
Linear(sec_hid_size, 3),
)
result = {
'model': 'gru',
'optimiser': 'adam',
'learning_rates': learning_rate,
'regularisation': 'dropout-0.2',
'recurrent_hidden': hidden_size,
'recurrent_layers': layers,
'layers_nodes': 'ip/2-act-drop-ip/4-act-drop-pred',
'activations': 'relu',
'embedding': 'w2v',
}
train_data, test_data = get_preprocessed_data()
train_loss_curves, train_acc_curves, test_loss_curves, test_acc_curves = train_and_predict(
train_df=train_data.copy(), test_df=test_data.copy(), device=get_device(), seed=0, num_epochs=100, bs=1024, model_class=SNLI_GRU,
embedding_type=0, embedding_dim=300,
hidden_size=hidden_size, layers=layers,
feed_forward_model=seq,
optimiser_class=Adam, optimiser_kwargs={'lr': learning_rate},
idx=0)
result['train_loss_curves'] = train_loss_curves
result['train_acc_curves'] = train_acc_curves
result['test_loss_curves'] = test_loss_curves
result['test_acc_curves'] = test_acc_curves
with open('/kaggle/working/result.pkl', 'wb') as f:
pickle.dump(result, f, protocol=pickle.DEFAULT_PROTOCOL)