-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain.py
434 lines (369 loc) · 15.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import argparse
import os
import time
import math
import numpy as np
import random
import sys
import shutil
import json
import string
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from utils import to_gpu, Corpus, batchify, train_ngram_lm, get_ppl, create_exp_dir
from models import Seq2Seq, MLP_D, MLP_G
# Set the random seed manually for reproducibility.
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
# create corpus
corpus = Corpus(args.data_path,
maxlen=args.maxlen,
vocab_size=args.vocab_size,
lowercase=args.lowercase)
# save arguments
ntokens = len(corpus.dictionary.word2idx)
print("Vocabulary Size: {}".format(ntokens))
args.ntokens = ntokens
# exp dir
create_exp_dir(os.path.join(args.save), ['train.py', 'models.py', 'utils.py'],
dict=corpus.dictionary.word2idx, options=args)
def logging(str, to_stdout=True):
with open(os.path.join(args.save, 'log.txt'), 'a') as f:
f.write(str + '\n')
if to_stdout:
print(str)
logging(str(vars(args)))
eval_batch_size = 10
test_data = batchify(corpus.test, eval_batch_size, shuffle=False)
train_data = batchify(corpus.train, args.batch_size, shuffle=True)
print("Loaded data!")
###############################################################################
# Build the models
###############################################################################
autoencoder = Seq2Seq(emsize=args.emsize,
nhidden=args.nhidden,
ntokens=args.ntokens,
nlayers=args.nlayers,
noise_r=args.noise_r,
hidden_init=args.hidden_init,
dropout=args.dropout)
gan_gen = MLP_G(ninput=args.z_size, noutput=args.nhidden, layers=args.arch_g)
gan_disc = MLP_D(ninput=args.nhidden, noutput=1, layers=args.arch_d)
print(autoencoder)
print(gan_gen)
print(gan_disc)
optimizer_ae = optim.SGD(autoencoder.parameters(), lr=args.lr_ae)
optimizer_gan_g = optim.Adam(gan_gen.parameters(),
lr=args.lr_gan_g,
betas=(args.beta1, 0.999))
optimizer_gan_d = optim.Adam(gan_disc.parameters(),
lr=args.lr_gan_d,
betas=(args.beta1, 0.999))
autoencoder = autoencoder.cuda()
gan_gen = gan_gen.cuda()
gan_disc = gan_disc.cuda()
# global vars
one = torch.Tensor(1).fill_(1).cuda()
mone = one * -1
###############################################################################
# Training code
###############################################################################
def save_model():
print("Saving models to {}".format(args.save))
torch.save({
"ae": autoencoder.state_dict(),
"gan_g": gan_gen.state_dict(),
"gan_d": gan_disc.state_dict()
},
os.path.join(args.save, "model.pt"))
def load_models():
model_args = json.load(open(os.path.join(args.save, 'options.json'), 'r'))
word2idx = json.load(open(os.path.join(args.save, 'vocab.json'), 'r'))
idx2word = {v: k for k, v in word2idx.items()}
print('Loading models from {}'.format(args.save))
loaded = torch.load(os.path.join(args.save, "model.pt"))
autoencoder.load_state_dict(loaded.get('ae'))
gan_gen.load_state_dict(loaded.get('gan_g'))
gan_disc.load_state_dict(loaded.get('gan_d'))
return model_args, idx2word, autoencoder, gan_gen, gan_disc
def evaluate_autoencoder(data_source, epoch):
# Turn on evaluation mode which disables dropout.
autoencoder.eval()
total_loss = 0
ntokens = len(corpus.dictionary.word2idx)
all_accuracies = 0
bcnt = 0
for i, batch in enumerate(data_source):
source, target, lengths = batch
source = Variable(source.cuda(), volatile=True)
target = Variable(target.cuda(), volatile=True)
mask = target.gt(0)
masked_target = target.masked_select(mask)
# examples x ntokens
output_mask = mask.unsqueeze(1).expand(mask.size(0), ntokens)
# output: batch x seq_len x ntokens
output = autoencoder(source, lengths, noise=True)
flattened_output = output.view(-1, ntokens)
masked_output = \
flattened_output.masked_select(output_mask).view(-1, ntokens)
total_loss += F.cross_entropy(masked_output, masked_target).data
# accuracy
max_vals, max_indices = torch.max(masked_output, 1)
all_accuracies += \
torch.mean(max_indices.eq(masked_target).float()).data[0]
bcnt += 1
aeoutf = os.path.join(args.save, "autoencoder.txt")
with open(aeoutf, "a") as f:
max_values, max_indices = torch.max(output, 2)
max_indices = \
max_indices.view(output.size(0), -1).data.cpu().numpy()
target = target.view(output.size(0), -1).data.cpu().numpy()
for t, idx in zip(target, max_indices):
# real sentence
chars = " ".join([corpus.dictionary.idx2word[x] for x in t])
f.write(chars + '\n')
# autoencoder output sentence
chars = " ".join([corpus.dictionary.idx2word[x] for x in idx])
f.write(chars + '\n'*2)
return total_loss[0] / len(data_source), all_accuracies/bcnt
def gen_fixed_noise(noise, to_save):
gan_gen.eval()
autoencoder.eval()
fake_hidden = gan_gen(noise)
max_indices = autoencoder.generate(fake_hidden, args.maxlen, sample=args.sample)
with open(to_save, "w") as f:
max_indices = max_indices.data.cpu().numpy()
for idx in max_indices:
# generated sentence
words = [corpus.dictionary.idx2word[x] for x in idx]
# truncate sentences to first occurrence of <eos>
truncated_sent = []
for w in words:
if w != '<eos>':
truncated_sent.append(w)
else:
break
chars = " ".join(truncated_sent)
f.write(chars + '\n')
def train_lm(data_path):
save_path = os.path.join("/tmp", ''.join(random.choice(
string.ascii_uppercase + string.digits) for _ in range(6)))
indices = []
noise = Variable(torch.ones(100, args.z_size).cuda())
for i in range(1000):
noise.data.normal_(0, 1)
fake_hidden = gan_gen(noise)
max_indices = autoencoder.generate(fake_hidden, args.maxlen, sample=args.sample)
indices.append(max_indices.data.cpu().numpy())
indices = np.concatenate(indices, axis=0)
with open(save_path, "w") as f:
# laplacian smoothing
for word in corpus.dictionary.word2idx.keys():
f.write(word+'\n')
for idx in indices:
words = [corpus.dictionary.idx2word[x] for x in idx]
# truncate sentences to first occurrence of <eos>
truncated_sent = []
for w in words:
if w != '<eos>':
truncated_sent.append(w)
else:
break
chars = " ".join(truncated_sent)
f.write(chars+'\n')
# reverse ppl
try:
rev_lm = train_ngram_lm(kenlm_path=args.kenlm_path,
data_path=save_path,
output_path=save_path+".arpa",
N=args.N)
with open(os.path.join(args.data_path, 'test.txt'), 'r') as f:
lines = f.readlines()
if args.lowercase:
lines = list(map(lambda x: x.lower(), lines))
sentences = [l.replace('\n', '') for l in lines]
rev_ppl = get_ppl(rev_lm, sentences)
except:
print("reverse ppl error: it maybe the generated files aren't valid to obtain an LM")
rev_ppl = 1e15
# forward ppl
for_lm = train_ngram_lm(kenlm_path=args.kenlm_path,
data_path=os.path.join(args.data_path, 'train.txt'),
output_path=save_path+".arpa",
N=args.N)
with open(save_path, 'r') as f:
lines = f.readlines()
sentences = [l.replace('\n', '') for l in lines]
for_ppl = get_ppl(for_lm, sentences)
return rev_ppl, for_ppl
def train_ae(epoch, batch, total_loss_ae, start_time, i):
autoencoder.train()
optimizer_ae.zero_grad()
source, target, lengths = batch
source = Variable(source.cuda())
target = Variable(target.cuda())
output = autoencoder(source, lengths, noise=True)
mask = target.gt(0)
masked_target = target.masked_select(mask)
output_mask = mask.unsqueeze(1).expand(mask.size(0), ntokens)
flat_output = output.view(-1, ntokens)
masked_output = flat_output.masked_select(output_mask).view(-1, ntokens)
loss = F.cross_entropy(masked_output, masked_target)
loss.backward()
torch.nn.utils.clip_grad_norm(autoencoder.parameters(), args.clip)
optimizer_ae.step()
total_loss_ae += loss.data[0]
if i % args.log_interval == 0:
probs = F.softmax(masked_output, dim=-1)
max_vals, max_indices = torch.max(probs, 1)
accuracy = torch.mean(max_indices.eq(masked_target).float()).data[0]
cur_loss = total_loss_ae / args.log_interval
elapsed = time.time() - start_time
logging('| epoch {:3d} | {:5d}/{:5d} batches | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f} | acc {:8.2f}'.format(
epoch, i, len(train_data),
elapsed * 1000 / args.log_interval,
cur_loss, math.exp(cur_loss), accuracy))
total_loss_ae = 0
start_time = time.time()
return total_loss_ae, start_time
def train_gan_g():
gan_gen.train()
optimizer_gan_g.zero_grad()
z = Variable(torch.Tensor(args.batch_size, args.z_size).normal_(0, 1).cuda())
fake_hidden = gan_gen(z)
errG = gan_disc(fake_hidden)
errG.backward(one)
optimizer_gan_g.step()
return errG
def grad_hook(grad):
#gan_norm = torch.norm(grad, p=2, dim=1).detach().data.mean()
#print(gan_norm, autoencoder.grad_norm)
return grad * args.grad_lambda
''' Steal from https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py '''
def calc_gradient_penalty(netD, real_data, fake_data):
bsz = real_data.size(0)
alpha = torch.rand(bsz, 1)
alpha = alpha.expand(bsz, real_data.size(1)) # only works for 2D XXX
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates = Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * args.gan_gp_lambda
return gradient_penalty
def train_gan_d(batch):
gan_disc.train()
optimizer_gan_d.zero_grad()
# + samples
source, target, lengths = batch
source = Variable(source.cuda())
target = Variable(target.cuda())
real_hidden = autoencoder(source, lengths, noise=False, encode_only=True)
errD_real = gan_disc(real_hidden.detach())
errD_real.backward(one)
# - samples
z = Variable(torch.Tensor(args.batch_size, args.z_size).normal_(0, 1).cuda())
fake_hidden = gan_gen(z)
errD_fake = gan_disc(fake_hidden.detach())
errD_fake.backward(mone)
# gradient penalty
gradient_penalty = calc_gradient_penalty(gan_disc, real_hidden.data, fake_hidden.data)
gradient_penalty.backward()
optimizer_gan_d.step()
return -(errD_real - errD_fake), errD_real, errD_fake
def train_gan_d_into_ae(batch):
autoencoder.train()
optimizer_ae.zero_grad()
source, target, lengths = batch
source = Variable(source.cuda())
target = Variable(target.cuda())
real_hidden = autoencoder(source, lengths, noise=False, encode_only=True)
real_hidden.register_hook(grad_hook)
errD_real = gan_disc(real_hidden)
errD_real.backward(mone)
torch.nn.utils.clip_grad_norm(autoencoder.parameters(), args.clip)
optimizer_ae.step()
return errD_real
def train():
logging("Training")
train_data = batchify(corpus.train, args.batch_size, shuffle=True)
# gan: preparation
if args.niters_gan_schedule != "":
gan_schedule = [int(x) for x in args.niters_gan_schedule.split("-")]
else:
gan_schedule = []
niter_gan = 1
fixed_noise = Variable(torch.ones(args.batch_size, args.z_size).normal_(0, 1).cuda())
best_rev_ppl = None
impatience = 0
for epoch in range(1, args.epochs+1):
# update gan training schedule
if epoch in gan_schedule:
niter_gan += 1
logging("GAN training loop schedule: {}".format(niter_gan))
total_loss_ae = 0
epoch_start_time = time.time()
start_time = time.time()
niter = 0
niter_g = 1
while niter < len(train_data):
# train ae
for i in range(args.niters_ae):
if niter >= len(train_data):
break # end of epoch
total_loss_ae, start_time = train_ae(epoch, train_data[niter],
total_loss_ae, start_time, niter)
niter += 1
# train gan
for k in range(niter_gan):
for i in range(args.niters_gan_d):
errD, errD_real, errD_fake = train_gan_d(
train_data[random.randint(0, len(train_data)-1)])
for i in range(args.niters_gan_ae):
train_gan_d_into_ae(train_data[random.randint(0, len(train_data)-1)])
for i in range(args.niters_gan_g):
errG = train_gan_g()
niter_g += 1
if niter_g % 100 == 0:
autoencoder.noise_anneal(args.noise_anneal)
logging('[{}/{}][{}/{}] Loss_D: {:.8f} (Loss_D_real: {:.8f} '
'Loss_D_fake: {:.8f}) Loss_G: {:.8f}'.format(
epoch, args.epochs, niter, len(train_data),
errD.data[0], errD_real.data[0],
errD_fake.data[0], errG.data[0]))
# eval
test_loss, accuracy = evaluate_autoencoder(test_data, epoch)
logging('| end of epoch {:3d} | time: {:5.2f}s | test loss {:5.2f} | '
'test ppl {:5.2f} | acc {:3.3f}'.format(epoch,
(time.time() - epoch_start_time), test_loss,
math.exp(test_loss), accuracy))
gen_fixed_noise(fixed_noise, os.path.join(args.save,
"{:03d}_examplar_gen".format(epoch)))
# eval with rev_ppl and for_ppl
rev_ppl, for_ppl = train_lm(args.data_path)
logging("Epoch {:03d}, Reverse perplexity {}".format(epoch, rev_ppl))
logging("Epoch {:03d}, Forward perplexity {}".format(epoch, for_ppl))
if best_rev_ppl is None or rev_ppl < best_rev_ppl:
impatience = 0
best_rev_ppl = rev_ppl
logging("New saving model: epoch {:03d}.".format(epoch))
save_model()
else:
if not args.no_earlystopping and epoch >= args.min_epochs:
impatience += 1
if impatience > args.patience:
logging("Ending training")
sys.exit()
train()