-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain_rnnlm.py
202 lines (178 loc) · 6.33 KB
/
train_rnnlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import torch
from torch import cuda
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import numpy as np
import h5py
import time
import logging
parser = argparse.ArgumentParser()
# Input data
parser.add_argument('--train_file', default='')
parser.add_argument('--val_file', default='')
parser.add_argument('--train_from', default='')
# Model options
parser.add_argument('--word_dim', default=300, type=int)
parser.add_argument('--h_dim', default=300, type=int)
parser.add_argument('--num_layers', default=1, type=int)
parser.add_argument('--dropout', default=0.2, type=float)
# Optimization options
parser.add_argument('--checkpoint_path', default='baseline.pt')
parser.add_argument('--num_epochs', default=15, type=int)
parser.add_argument('--lr', default=1, type=float)
parser.add_argument('--max_grad_norm', default=5, type=float)
parser.add_argument('--test', default=, type=int)
parser.add_argument('--gpu', default=2, type=int)
parser.add_argument('--seed', default=3435, type=int)
parser.add_argument('--print_every', type=int, default=500)
class Dataset(object):
def __init__(self, h5_file):
data = h5py.File(h5_file, 'r')
self.sents = self._convert(data['source']).long()
self.sent_lengths = self._convert(data['source_l']).long()
self.batch_size = self._convert(data['batch_l']).long()
self.batch_idx = self._convert(data['batch_idx']).long()
self.vocab_size = data['vocab_size'][0]
self.num_batches = self.batch_idx.size(0)
def _convert(self, x):
return torch.from_numpy(np.asarray(x))
def __len__(self):
return self.num_batches
def __getitem__(self, idx):
assert(idx < self.num_batches and idx >= 0)
start_idx = self.batch_idx[idx]
end_idx = start_idx + self.batch_size[idx]
length = self.sent_lengths[idx]
sents = self.sents[start_idx:end_idx]
batch_size = self.batch_size[idx]
data_batch = [Variable(sents[:, :length]), length-1, batch_size]
return data_batch
class RNNLM(nn.Module):
def __init__(self, vocab_size=10000,
word_dim=300,
h_dim=300,
num_layers=1,
dropout=0):
super(RNNLM, self).__init__()
self.h_dim = h_dim
self.num_layers = num_layers
self.word_vecs = nn.Embedding(vocab_size, word_dim)
self.dropout = nn.Dropout(dropout)
self.rnn = nn.LSTM(word_dim, h_dim, num_layers = num_layers,
dropout = dropout, batch_first = True)
self.vocab_linear = nn.Sequential(nn.Dropout(dropout),
nn.Linear(h_dim, vocab_size),
nn.LogSoftmax(dim=-1))
def forward(self, sent):
word_vecs = self.dropout(self.word_vecs(sent[:, :-1])) #last token is </s>
h, _ = self.rnn(word_vecs)
preds = self.vocab_linear(h)
return preds
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_data = Dataset(args.train_file)
val_data = Dataset(args.val_file)
train_sents = train_data.batch_size.sum()
vocab_size = int(train_data.vocab_size)
print('Train data: %d batches' % len(train_data))
print('Val data: %d batches' % len(val_data))
print('Word vocab size: %d' % vocab_size)
cuda.set_device(args.gpu)
if args.train_from == '':
model = RNNLM(vocab_size = vocab_size,
word_dim = args.word_dim,
h_dim = args.h_dim,
num_layers = args.num_layers,
dropout = args.dropout)
for param in model.parameters():
param.data.uniform_(-0.1, 0.1)
else:
print('loading model from ' + args.train_from)
checkpoint = torch.load(args.train_from)
model = checkpoint['model']
print("model architecture")
print(model)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
criterion = nn.NLLLoss()
model.train()
if args.gpu >= 0:
model.cuda()
criterion.cuda()
best_val_ppl = 1e5
epoch = 0
if args.test == 1:
print('Evaluating on test')
eval(val_data, model, criterion)
exit()
while epoch < args.num_epochs:
start_time = time.time()
epoch += 1
print('Starting epoch %d' % epoch)
train_nll = 0.
num_sents = 0
num_words = 0
b = 0
for i in np.random.permutation(len(train_data)):
sents, length, batch_size = train_data[i]
if args.gpu >= 0:
sents = sents.cuda()
b += 1
optimizer.zero_grad()
preds = model(sents)
nll = sum([criterion(preds[:, l], sents[:, l+1]) for l in range(length)])
train_nll += nll.data[0]*batch_size
nll.backward()
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm(model.parameters(), args.max_grad_norm)
optimizer.step()
num_sents += batch_size
num_words += batch_size * length
if b % args.print_every == 0:
param_norm = sum([p.norm()**2 for p in model.parameters()]).data[0]**0.5
print('Epoch: %d, Batch: %d/%d, LR: %.4f, TrainPPL: %.2f, |Param|: %.4f, BestValPerf: %.2f, Throughput: %.2f examples/sec' %
(epoch, b, len(train_data), args.lr, np.exp(train_nll / num_words),
param_norm, best_val_ppl, num_sents / (time.time() - start_time)))
print('--------------------------------')
print('Checking validation perf...')
val_ppl = eval(val_data, model, criterion)
if val_ppl < best_val_ppl:
best_val_ppl = val_ppl
checkpoint = {
'args': args.__dict__,
'model': model,
'optimizer': optimizer
}
print('Saving checkpoint to %s' % args.checkpoint_path)
torch.save(checkpoint, args.checkpoint_path)
def eval(data, model, criterion):
model.eval()
num_sents = 0
num_words = 0
total_nll = 0.
for i in range(len(data)):
sents, length, batch_size = data[i]
num_words += batch_size*length
num_sents += batch_size
if args.gpu >= 0:
sents = sents.cuda()
preds = model.forward(sents)
nll = sum([criterion(preds[:, l], sents[:, l+1]) for l in range(length)])
total_nll += nll.data[0]*batch_size
ppl = np.exp(total_nll / num_words)
print('PPL: %.4f' % (ppl))
model.train()
return ppl
if __name__ == '__main__':
args = parser.parse_args()
main(args)