forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrng_philox.py
102 lines (70 loc) · 3.02 KB
/
rng_philox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""RNG imitiating torch cuda randn on CPU. You are welcome.
Usage:
```
g = Generator(seed=0)
print(g.randn(shape=(3, 4)))
```
Expected output:
```
[[-0.92466259 -0.42534415 -2.6438457 0.14518388]
[-0.12086647 -0.57972564 -0.62285122 -0.32838709]
[-1.07454231 -0.36314407 -1.67105067 2.26550497]]
```
"""
import numpy as np
philox_m = [0xD2511F53, 0xCD9E8D57]
philox_w = [0x9E3779B9, 0xBB67AE85]
two_pow32_inv = np.array([2.3283064e-10], dtype=np.float32)
two_pow32_inv_2pi = np.array([2.3283064e-10 * 6.2831855], dtype=np.float32)
def uint32(x):
"""Converts (N,) np.uint64 array into (2, N) np.unit32 array."""
return x.view(np.uint32).reshape(-1, 2).transpose(1, 0)
def philox4_round(counter, key):
"""A single round of the Philox 4x32 random number generator."""
v1 = uint32(counter[0].astype(np.uint64) * philox_m[0])
v2 = uint32(counter[2].astype(np.uint64) * philox_m[1])
counter[0] = v2[1] ^ counter[1] ^ key[0]
counter[1] = v2[0]
counter[2] = v1[1] ^ counter[3] ^ key[1]
counter[3] = v1[0]
def philox4_32(counter, key, rounds=10):
"""Generates 32-bit random numbers using the Philox 4x32 random number generator.
Parameters:
counter (numpy.ndarray): A 4xN array of 32-bit integers representing the counter values (offset into generation).
key (numpy.ndarray): A 2xN array of 32-bit integers representing the key values (seed).
rounds (int): The number of rounds to perform.
Returns:
numpy.ndarray: A 4xN array of 32-bit integers containing the generated random numbers.
"""
for _ in range(rounds - 1):
philox4_round(counter, key)
key[0] = key[0] + philox_w[0]
key[1] = key[1] + philox_w[1]
philox4_round(counter, key)
return counter
def box_muller(x, y):
"""Returns just the first out of two numbers generated by Box–Muller transform algorithm."""
u = x * two_pow32_inv + two_pow32_inv / 2
v = y * two_pow32_inv_2pi + two_pow32_inv_2pi / 2
s = np.sqrt(-2.0 * np.log(u))
r1 = s * np.sin(v)
return r1.astype(np.float32)
class Generator:
"""RNG that produces same outputs as torch.randn(..., device='cuda') on CPU"""
def __init__(self, seed):
self.seed = seed
self.offset = 0
def randn(self, shape):
"""Generate a sequence of n standard normal random variables using the Philox 4x32 random number generator and the Box-Muller transform."""
n = 1
for x in shape:
n *= x
counter = np.zeros((4, n), dtype=np.uint32)
counter[0] = self.offset
counter[2] = np.arange(n, dtype=np.uint32) # up to 2^32 numbers can be generated - if you want more you'd need to spill into counter[3]
self.offset += 1
key = np.empty(n, dtype=np.uint64)
key.fill(self.seed)
key = uint32(key)
g = philox4_32(counter, key)
return box_muller(g[0], g[1]).reshape(shape) # discard g[2] and g[3]