forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrims.swift
757 lines (729 loc) · 17.7 KB
/
Prims.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
//===--- Prims.swift ------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// The test implements Prim's algorithm for minimum spanning tree building.
// http://en.wikipedia.org/wiki/Prim%27s_algorithm
// This class implements array-based heap (priority queue).
// It is used to store edges from nodes in spanning tree to nodes outside of it.
// We are interested only in the edges with the smallest costs, so if there are
// several edges pointing to the same node, we keep only one from them. Thus,
// it is enough to record this node instead.
// We maintain a map (node index in graph)->(node index in heap) to be able to
// update the heap fast when we add a new node to the tree.
import TestsUtils
class PriorityQueue {
final var heap : Array<EdgeCost>
final var graphIndexToHeapIndexMap : Array<Int?>
// Create heap for graph with NUM nodes.
init(Num: Int) {
heap = Array<EdgeCost>()
graphIndexToHeapIndexMap = Array<Int?>(repeating:nil, count: Num)
}
func isEmpty() -> Bool {
return heap.isEmpty
}
// Insert element N to heap, maintaining the heap property.
func insert(n : EdgeCost) {
let ind: Int = heap.count
heap.append(n)
graphIndexToHeapIndexMap[n.to] = heap.count - 1
bubbleUp(ind)
}
// Insert element N if in's not in the heap, or update its cost if the new
// value is less than the existing one.
func insertOrUpdate(n : EdgeCost) {
let id = n.to
let c = n.cost
if let ind = graphIndexToHeapIndexMap[id] {
if heap[ind].cost <= c {
// We don't need an edge with a bigger cost
return
}
heap[ind].cost = c
heap[ind].from = n.from
bubbleUp(ind)
} else {
insert(n)
}
}
// Restore heap property by moving element at index IND up.
// This is needed after insertion, and after decreasing an element's cost.
func bubbleUp(ind: Int) {
var ind = ind
let c = heap[ind].cost
while (ind != 0) {
let p = getParentIndex(ind)
if heap[p].cost > c {
Swap(p, with: ind)
ind = p
} else {
break
}
}
}
// Pop minimum element from heap and restore the heap property after that.
func pop() -> EdgeCost? {
if (heap.isEmpty) {
return nil
}
Swap(0, with:heap.count-1)
let r = heap.removeLast()
graphIndexToHeapIndexMap[r.to] = nil
bubbleDown(0)
return r
}
// Restore heap property by moving element at index IND down.
// This is needed after removing an element, and after increasing an
// element's cost.
func bubbleDown(ind: Int) {
var ind = ind
let n = heap.count
while (ind < n) {
let l = getLeftChildIndex(ind)
let r = getRightChildIndex(ind)
if (l >= n) {
break
}
var min: Int
if (r < n && heap[r].cost < heap[l].cost) {
min = r
} else {
min = l
}
if (heap[ind].cost <= heap[min].cost) {
break
}
Swap(ind, with: min)
ind = min
}
}
// Swaps elements I and J in the heap and correspondingly updates
// graphIndexToHeapIndexMap.
func Swap(i: Int, with j : Int) {
if (i == j) {
return
}
(heap[i], heap[j]) = (heap[j], heap[i])
let (I, J) = (heap[i].to, heap[j].to)
(graphIndexToHeapIndexMap[I], graphIndexToHeapIndexMap[J]) =
(graphIndexToHeapIndexMap[J], graphIndexToHeapIndexMap[I])
}
// Dumps the heap.
func dump() {
print("QUEUE")
for nodeCost in heap {
let to : Int = nodeCost.to
let from : Int = nodeCost.from
let cost : Double = nodeCost.cost
print("(\(from)->\(to), \(cost))")
}
}
func getLeftChildIndex(index : Int) -> Int {
return index*2 + 1
}
func getRightChildIndex(index : Int) -> Int {
return (index + 1)*2
}
func getParentIndex(childIndex : Int) -> Int {
return (childIndex - 1)/2
}
}
struct GraphNode {
var id : Int
var adjList : Array<Int>
init(i : Int) {
id = i
adjList = Array<Int>()
}
}
struct EdgeCost {
var to : Int
var cost : Double
var from: Int
}
struct Edge : Equatable {
var start : Int
var end : Int
}
func ==(lhs: Edge, rhs: Edge) -> Bool {
return lhs.start == rhs.start && lhs.end == rhs.end
}
extension Edge : Hashable {
var hashValue: Int {
get {
return start.hashValue ^ end.hashValue
}
}
}
func Prims(graph : Array<GraphNode>, _ fun : (Int,Int)->Double) -> Array<Int?> {
var treeEdges = Array<Int?>(repeating:nil, count:graph.count)
let queue = PriorityQueue(Num:graph.count)
// Make the minimum spanning tree root its own parent for simplicity.
queue.insert(EdgeCost(to: 0, cost: 0.0, from: 0))
// Take an element with the smallest cost from the queue and add its
// neighbours to the queue if their cost was updated
while !queue.isEmpty() {
// Add an edge with minimum cost to the spanning tree
let e = queue.pop()!
let newnode = e.to
// Add record about the edge newnode->e.from to treeEdges
treeEdges[newnode] = e.from
// Check all adjacent nodes and add edges, ending outside the tree, to the
// queue. If the queue already contains an edge to an adjacent node, we
// replace existing one with the new one in case the new one costs less.
for adjNodeIndex in graph[newnode].adjList {
if treeEdges[adjNodeIndex] != nil {
continue
}
let newcost = fun(newnode, graph[adjNodeIndex].id)
queue.insertOrUpdate(EdgeCost(to: adjNodeIndex, cost: newcost, from: newnode))
}
}
return treeEdges
}
@inline(never)
public func run_Prims(N: Int) {
for _ in 1...5*N {
let nodes : [Int] = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99 ]
// Prim's algorithm is designed for undirected graphs.
// Due to that, in our set all the edges are paired, i.e. for any
// edge (start,end,C) there is also an edge (end,start,C).
let edges : [(Int, Int, Double)] = [
(26, 47, 921),
(20, 25, 971),
(92, 59, 250),
(33, 55, 1391),
(78, 39, 313),
(7, 25, 637),
(18, 19, 1817),
(33, 41, 993),
(64, 41, 926),
(88, 86, 574),
(93, 15, 1462),
(86, 33, 1649),
(37, 35, 841),
(98, 51, 1160),
(15, 30, 1125),
(65, 78, 1052),
(58, 12, 1273),
(12, 17, 285),
(45, 61, 1608),
(75, 53, 545),
(99, 48, 410),
(97, 0, 1303),
(48, 17, 1807),
(1, 54, 1491),
(15, 34, 807),
(94, 98, 646),
(12, 69, 136),
(65, 11, 983),
(63, 83, 1604),
(78, 89, 1828),
(61, 63, 845),
(18, 36, 1626),
(68, 52, 1324),
(14, 50, 690),
(3, 11, 943),
(21, 68, 914),
(19, 44, 1762),
(85, 80, 270),
(59, 92, 250),
(86, 84, 1431),
(19, 18, 1817),
(52, 68, 1324),
(16, 29, 1108),
(36, 80, 395),
(67, 18, 803),
(63, 88, 1717),
(68, 21, 914),
(75, 82, 306),
(49, 82, 1292),
(73, 45, 1876),
(89, 82, 409),
(45, 47, 272),
(22, 83, 597),
(61, 12, 1791),
(44, 68, 1229),
(50, 51, 917),
(14, 53, 355),
(77, 41, 138),
(54, 21, 1870),
(93, 70, 1582),
(76, 2, 1658),
(83, 73, 1162),
(6, 1, 482),
(11, 65, 983),
(81, 90, 1024),
(19, 1, 970),
(8, 58, 1131),
(60, 42, 477),
(86, 29, 258),
(69, 59, 903),
(34, 15, 807),
(37, 2, 1451),
(7, 73, 754),
(47, 86, 184),
(67, 17, 449),
(18, 67, 803),
(25, 4, 595),
(3, 31, 1337),
(64, 31, 1928),
(9, 43, 237),
(83, 63, 1604),
(47, 45, 272),
(86, 88, 574),
(87, 74, 934),
(98, 94, 646),
(20, 1, 642),
(26, 92, 1344),
(18, 17, 565),
(47, 11, 595),
(10, 59, 1558),
(2, 76, 1658),
(77, 74, 1277),
(42, 60, 477),
(80, 36, 395),
(35, 23, 589),
(50, 37, 203),
(6, 96, 481),
(78, 65, 1052),
(1, 52, 127),
(65, 23, 1932),
(46, 51, 213),
(59, 89, 89),
(15, 93, 1462),
(69, 3, 1305),
(17, 37, 1177),
(30, 3, 193),
(9, 15, 818),
(75, 95, 977),
(86, 47, 184),
(10, 12, 1736),
(80, 27, 1010),
(12, 10, 1736),
(86, 1, 1958),
(60, 12, 1240),
(43, 71, 683),
(91, 65, 1519),
(33, 86, 1649),
(62, 26, 1773),
(1, 13, 1187),
(2, 10, 1018),
(91, 29, 351),
(69, 12, 136),
(43, 9, 237),
(29, 86, 258),
(17, 48, 1807),
(31, 64, 1928),
(68, 61, 1936),
(76, 38, 1724),
(1, 6, 482),
(53, 14, 355),
(51, 50, 917),
(54, 13, 815),
(19, 29, 883),
(35, 87, 974),
(70, 96, 511),
(23, 35, 589),
(39, 69, 1588),
(93, 73, 1093),
(13, 73, 435),
(5, 60, 1619),
(42, 41, 1523),
(66, 58, 1596),
(1, 67, 431),
(17, 67, 449),
(30, 95, 906),
(71, 43, 683),
(5, 87, 190),
(12, 78, 891),
(30, 97, 402),
(28, 17, 1131),
(7, 97, 1356),
(58, 66, 1596),
(20, 37, 1294),
(73, 76, 514),
(54, 8, 613),
(68, 35, 1252),
(92, 32, 701),
(3, 90, 652),
(99, 46, 1576),
(13, 54, 815),
(20, 87, 1390),
(36, 18, 1626),
(51, 26, 1146),
(2, 23, 581),
(29, 7, 1558),
(88, 59, 173),
(17, 1, 1071),
(37, 49, 1011),
(18, 6, 696),
(88, 33, 225),
(58, 38, 802),
(87, 50, 1744),
(29, 91, 351),
(6, 71, 1053),
(45, 24, 1720),
(65, 91, 1519),
(37, 50, 203),
(11, 3, 943),
(72, 65, 1330),
(45, 50, 339),
(25, 20, 971),
(15, 9, 818),
(14, 54, 1353),
(69, 95, 393),
(8, 66, 1213),
(52, 2, 1608),
(50, 14, 690),
(50, 45, 339),
(1, 37, 1273),
(45, 93, 1650),
(39, 78, 313),
(1, 86, 1958),
(17, 28, 1131),
(35, 33, 1667),
(23, 2, 581),
(51, 66, 245),
(17, 54, 924),
(41, 49, 1629),
(60, 5, 1619),
(56, 93, 1110),
(96, 13, 461),
(25, 7, 637),
(11, 69, 370),
(90, 3, 652),
(39, 71, 1485),
(65, 51, 1529),
(20, 6, 1414),
(80, 85, 270),
(73, 83, 1162),
(0, 97, 1303),
(13, 33, 826),
(29, 71, 1788),
(33, 12, 461),
(12, 58, 1273),
(69, 39, 1588),
(67, 75, 1504),
(87, 20, 1390),
(88, 97, 526),
(33, 88, 225),
(95, 69, 393),
(2, 52, 1608),
(5, 25, 719),
(34, 78, 510),
(53, 99, 1074),
(33, 35, 1667),
(57, 30, 361),
(87, 58, 1574),
(13, 90, 1030),
(79, 74, 91),
(4, 86, 1107),
(64, 94, 1609),
(11, 12, 167),
(30, 45, 272),
(47, 91, 561),
(37, 17, 1177),
(77, 49, 883),
(88, 23, 1747),
(70, 80, 995),
(62, 77, 907),
(18, 4, 371),
(73, 93, 1093),
(11, 47, 595),
(44, 23, 1990),
(20, 0, 512),
(3, 69, 1305),
(82, 3, 1815),
(20, 88, 368),
(44, 45, 364),
(26, 51, 1146),
(7, 65, 349),
(71, 39, 1485),
(56, 88, 1954),
(94, 69, 1397),
(12, 28, 544),
(95, 75, 977),
(32, 90, 789),
(53, 1, 772),
(54, 14, 1353),
(49, 77, 883),
(92, 26, 1344),
(17, 18, 565),
(97, 88, 526),
(48, 80, 1203),
(90, 32, 789),
(71, 6, 1053),
(87, 35, 974),
(55, 90, 1808),
(12, 61, 1791),
(1, 96, 328),
(63, 10, 1681),
(76, 34, 871),
(41, 64, 926),
(42, 97, 482),
(25, 5, 719),
(23, 65, 1932),
(54, 1, 1491),
(28, 12, 544),
(89, 10, 108),
(27, 33, 143),
(67, 1, 431),
(32, 45, 52),
(79, 33, 1871),
(6, 55, 717),
(10, 58, 459),
(67, 39, 393),
(10, 4, 1808),
(96, 6, 481),
(1, 19, 970),
(97, 7, 1356),
(29, 16, 1108),
(1, 53, 772),
(30, 15, 1125),
(4, 6, 634),
(6, 20, 1414),
(88, 56, 1954),
(87, 64, 1950),
(34, 76, 871),
(17, 12, 285),
(55, 59, 321),
(61, 68, 1936),
(50, 87, 1744),
(84, 44, 952),
(41, 33, 993),
(59, 18, 1352),
(33, 27, 143),
(38, 32, 1210),
(55, 70, 1264),
(38, 58, 802),
(1, 20, 642),
(73, 13, 435),
(80, 48, 1203),
(94, 64, 1609),
(38, 28, 414),
(73, 23, 1113),
(78, 12, 891),
(26, 62, 1773),
(87, 43, 579),
(53, 6, 95),
(59, 95, 285),
(88, 63, 1717),
(17, 5, 633),
(66, 8, 1213),
(41, 42, 1523),
(83, 22, 597),
(95, 30, 906),
(51, 65, 1529),
(17, 49, 1727),
(64, 87, 1950),
(86, 4, 1107),
(37, 98, 1102),
(32, 92, 701),
(60, 94, 198),
(73, 98, 1749),
(4, 18, 371),
(96, 70, 511),
(7, 29, 1558),
(35, 37, 841),
(27, 64, 384),
(12, 33, 461),
(36, 38, 529),
(69, 16, 1183),
(91, 47, 561),
(85, 29, 1676),
(3, 82, 1815),
(69, 58, 1579),
(93, 45, 1650),
(97, 42, 482),
(37, 1, 1273),
(61, 4, 543),
(96, 1, 328),
(26, 0, 1993),
(70, 64, 878),
(3, 30, 193),
(58, 69, 1579),
(4, 25, 595),
(31, 3, 1337),
(55, 6, 717),
(39, 67, 393),
(78, 34, 510),
(75, 67, 1504),
(6, 53, 95),
(51, 79, 175),
(28, 91, 1040),
(89, 78, 1828),
(74, 93, 1587),
(45, 32, 52),
(10, 2, 1018),
(49, 37, 1011),
(63, 61, 845),
(0, 20, 512),
(1, 17, 1071),
(99, 53, 1074),
(37, 20, 1294),
(10, 89, 108),
(33, 92, 946),
(23, 73, 1113),
(23, 88, 1747),
(49, 17, 1727),
(88, 20, 368),
(21, 54, 1870),
(70, 93, 1582),
(59, 88, 173),
(32, 38, 1210),
(89, 59, 89),
(23, 44, 1990),
(38, 76, 1724),
(30, 57, 361),
(94, 60, 198),
(59, 10, 1558),
(55, 64, 1996),
(12, 11, 167),
(36, 24, 1801),
(97, 30, 402),
(52, 1, 127),
(58, 87, 1574),
(54, 17, 924),
(93, 74, 1587),
(24, 36, 1801),
(2, 37, 1451),
(91, 28, 1040),
(59, 55, 321),
(69, 11, 370),
(8, 54, 613),
(29, 85, 1676),
(44, 19, 1762),
(74, 79, 91),
(93, 56, 1110),
(58, 10, 459),
(41, 50, 1559),
(66, 51, 245),
(80, 19, 1838),
(33, 79, 1871),
(76, 73, 514),
(98, 37, 1102),
(45, 44, 364),
(16, 69, 1183),
(49, 41, 1629),
(19, 80, 1838),
(71, 57, 500),
(6, 4, 634),
(64, 27, 384),
(84, 86, 1431),
(5, 17, 633),
(96, 88, 334),
(87, 5, 190),
(70, 21, 1619),
(55, 33, 1391),
(10, 63, 1681),
(11, 62, 1339),
(33, 13, 826),
(64, 70, 878),
(65, 72, 1330),
(70, 55, 1264),
(64, 55, 1996),
(50, 41, 1559),
(46, 99, 1576),
(88, 96, 334),
(51, 20, 868),
(73, 7, 754),
(80, 70, 995),
(44, 84, 952),
(29, 19, 883),
(59, 69, 903),
(57, 53, 1575),
(90, 13, 1030),
(28, 38, 414),
(12, 60, 1240),
(85, 58, 573),
(90, 55, 1808),
(4, 10, 1808),
(68, 44, 1229),
(92, 33, 946),
(90, 81, 1024),
(53, 75, 545),
(45, 30, 272),
(41, 77, 138),
(21, 70, 1619),
(45, 73, 1876),
(35, 68, 1252),
(13, 96, 461),
(53, 57, 1575),
(82, 89, 409),
(28, 61, 449),
(58, 61, 78),
(27, 80, 1010),
(61, 58, 78),
(38, 36, 529),
(80, 30, 397),
(18, 59, 1352),
(62, 11, 1339),
(95, 59, 285),
(51, 98, 1160),
(6, 18, 696),
(30, 80, 397),
(69, 94, 1397),
(58, 85, 573),
(48, 99, 410),
(51, 46, 213),
(57, 71, 500),
(91, 30, 104),
(65, 7, 349),
(79, 51, 175),
(47, 26, 921),
(4, 61, 543),
(98, 73, 1749),
(74, 77, 1277),
(61, 28, 449),
(58, 8, 1131),
(61, 45, 1608),
(74, 87, 934),
(71, 29, 1788),
(30, 91, 104),
(13, 1, 1187),
(0, 26, 1993),
(82, 49, 1292),
(43, 87, 579),
(24, 45, 1720),
(20, 51, 868),
(77, 62, 907),
(82, 75, 306),
]
// Prepare graph and edge->cost map
var graph = Array<GraphNode>()
for n in nodes {
graph.append(GraphNode(i: n))
}
var map = Dictionary<Edge, Double>()
for tup in edges {
map[Edge(start: tup.0, end: tup.1)] = tup.2
graph[tup.0].adjList.append(tup.1)
}
// Find spanning tree
let treeEdges = Prims(graph, { (start: Int, end: Int) in
return map[Edge(start: start, end: end)]!
})
// Compute its cost in order to check results
var cost = 0.0
for i in 1..<treeEdges.count {
if let n = treeEdges[i] { cost += map[Edge(start: n, end: i)]! }
}
CheckResults(Int(cost) == 49324,
"Incorrect results in Prims: \(Int(cost)) != 49324.")
}
}