-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.py
282 lines (227 loc) · 11.5 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import time
import random
from collections import OrderedDict
from simulator import Simulator
class TrafficLight(object):
"""A traffic light that switches periodically."""
valid_states = [True, False] # True = NS open, False = EW open
def __init__(self, state=None, period=None):
self.state = state if state is not None else random.choice(self.valid_states)
self.period = period if period is not None else random.choice([3, 4, 5])
self.last_updated = 0
def reset(self):
self.last_updated = 0
def update(self, t):
if t - self.last_updated >= self.period:
self.state = not self.state # assuming state is boolean
self.last_updated = t
class Environment(object):
"""Environment within which all agents operate."""
valid_actions = [None, 'forward', 'left', 'right']
valid_inputs = {'light': TrafficLight.valid_states, 'oncoming': valid_actions, 'left': valid_actions, 'right': valid_actions}
valid_headings = [(1, 0), (0, -1), (-1, 0), (0, 1)] # ENWS
hard_time_limit = -100 # even if enforce_deadline is False, end trial when deadline reaches this value (to avoid deadlocks)
def __init__(self, num_dummies=3):
self.num_dummies = num_dummies # no. of dummy agents
# Initialize simulation variables
self.done = False
self.t = 0
self.agent_states = OrderedDict()
self.status_text = ""
self.success = 0
self.reward =0
# Road network
self.grid_size = (8, 6) # (cols, rows)
self.bounds = (1, 1, self.grid_size[0], self.grid_size[1])
self.block_size = 100
self.intersections = OrderedDict()
self.roads = []
for x in xrange(self.bounds[0], self.bounds[2] + 1):
for y in xrange(self.bounds[1], self.bounds[3] + 1):
self.intersections[(x, y)] = TrafficLight() # a traffic light at each intersection
for a in self.intersections:
for b in self.intersections:
if a == b:
continue
if (abs(a[0] - b[0]) + abs(a[1] - b[1])) == 1: # L1 distance = 1
self.roads.append((a, b))
# Dummy agents
for i in xrange(self.num_dummies):
self.create_agent(DummyAgent)
# Primary agent and associated parameters
self.primary_agent = None # to be set explicitly
self.enforce_deadline = False
def create_agent(self, agent_class, *args, **kwargs):
agent = agent_class(self, *args, **kwargs)
self.agent_states[agent] = {'location': random.choice(self.intersections.keys()), 'heading': (0, 1)}
return agent
def set_primary_agent(self, agent, enforce_deadline=False):
self.primary_agent = agent
self.enforce_deadline = enforce_deadline
def reset(self):
self.done = False
self.t = 0
# Reset traffic lights
for traffic_light in self.intersections.itervalues():
traffic_light.reset()
# Pick a start and a destination
start = random.choice(self.intersections.keys())
destination = random.choice(self.intersections.keys())
# Ensure starting location and destination are not too close
while self.compute_dist(start, destination) < 4:
start = random.choice(self.intersections.keys())
destination = random.choice(self.intersections.keys())
start_heading = random.choice(self.valid_headings)
deadline = self.compute_dist(start, destination) * 5
#print "Environment.reset(): Trial set up with start = {}, destination = {}, deadline = {}".format(start, destination, deadline)
# Initialize agent(s)
for agent in self.agent_states.iterkeys():
self.agent_states[agent] = {
'location': start if agent is self.primary_agent else random.choice(self.intersections.keys()),
'heading': start_heading if agent is self.primary_agent else random.choice(self.valid_headings),
'destination': destination if agent is self.primary_agent else None,
'deadline': deadline if agent is self.primary_agent else None}
agent.reset(destination=(destination if agent is self.primary_agent else None))
def step(self):
#print "Environment.step(): t = {}".format(self.t) # [debug]
# Update traffic lights
for intersection, traffic_light in self.intersections.iteritems():
traffic_light.update(self.t)
# Update agents
for agent in self.agent_states.iterkeys():
agent.update(self.t)
if self.done:
return # primary agent might have reached destination
if self.primary_agent is not None:
agent_deadline = self.agent_states[self.primary_agent]['deadline']
if agent_deadline <= self.hard_time_limit:
self.done = True
#print "Environment.step(): Primary agent hit hard time limit ({})! Trial aborted.".format(self.hard_time_limit)
elif self.enforce_deadline and agent_deadline <= 0:
self.done = True
#print "Environment.step(): Primary agent ran out of time! Trial aborted."
self.agent_states[self.primary_agent]['deadline'] = agent_deadline - 1
self.t += 1
def sense(self, agent):
assert agent in self.agent_states, "Unknown agent!"
state = self.agent_states[agent]
location = state['location']
heading = state['heading']
light = 'green' if (self.intersections[location].state and heading[1] != 0) or ((not self.intersections[location].state) and heading[0] != 0) else 'red'
# Populate oncoming, left, right
oncoming = None
left = None
right = None
for other_agent, other_state in self.agent_states.iteritems():
if agent == other_agent or location != other_state['location'] or (heading[0] == other_state['heading'][0] and heading[1] == other_state['heading'][1]):
continue
other_heading = other_agent.get_next_waypoint()
if (heading[0] * other_state['heading'][0] + heading[1] * other_state['heading'][1]) == -1:
if oncoming != 'left': # we don't want to override oncoming == 'left'
oncoming = other_heading
elif (heading[1] == other_state['heading'][0] and -heading[0] == other_state['heading'][1]):
if right != 'forward' and right != 'left': # we don't want to override right == 'forward or 'left'
right = other_heading
else:
if left != 'forward': # we don't want to override left == 'forward'
left = other_heading
return {'light': light, 'oncoming': oncoming, 'left': left, 'right': right}
def get_deadline(self, agent):
return self.agent_states[agent]['deadline'] if agent is self.primary_agent else None
def act(self, agent, action):
assert agent in self.agent_states, "Unknown agent!"
assert action in self.valid_actions, "Invalid action!"
state = self.agent_states[agent]
location = state['location']
heading = state['heading']
light = 'green' if (self.intersections[location].state and heading[1] != 0) or ((not self.intersections[location].state) and heading[0] != 0) else 'red'
inputs = self.sense(agent)
# Move agent if within bounds and obeys traffic rules
reward = 0 # reward/penalty
move_okay = True
if action == 'forward':
if light != 'green':
move_okay = False
elif action == 'left':
if light == 'green' and (inputs['oncoming'] == None or inputs['oncoming'] == 'left'):
heading = (heading[1], -heading[0])
else:
move_okay = False
elif action == 'right':
if light == 'green' or inputs['left'] != 'forward':
heading = (-heading[1], heading[0])
else:
move_okay = False
if move_okay:
# Valid move (could be null)
if action is not None:
# Valid non-null move
location = ((location[0] + heading[0] - self.bounds[0]) % (self.bounds[2] - self.bounds[0] + 1) + self.bounds[0],
(location[1] + heading[1] - self.bounds[1]) % (self.bounds[3] - self.bounds[1] + 1) + self.bounds[1]) # wrap-around
#if self.bounds[0] <= location[0] <= self.bounds[2] and self.bounds[1] <= location[1] <= self.bounds[3]: # bounded
state['location'] = location
state['heading'] = heading
reward = 2.0 if action == agent.get_next_waypoint() else -0.5 # valid, but is it correct? (as per waypoint)
self.reward += reward
else:
# Valid null move
reward = 0.0
else:
# Invalid move
reward = -1.0
self.reward += reward
if agent is self.primary_agent:
if state['location'] == state['destination']:
if state['deadline'] >= 0:
reward += 10 # bonus
self.reward += reward
self.success+=1
#print self.success
self.done = True
#print "Environment.act(): Primary agent has reached destination!" # [debug]
self.status_text = "state: {}\naction: {}\nreward: {}".format(agent.get_state(), action, reward)
#print "Environment.act() [POST]: location: {}, heading: {}, action: {}, reward: {}".format(location, heading, action, reward) # [debug]
return reward
def compute_dist(self, a, b):
"""L1 distance between two points."""
return abs(b[0] - a[0]) + abs(b[1] - a[1])
class Agent(object):
"""Base class for all agents."""
def __init__(self, env):
self.env = env
self.state = None
self.next_waypoint = None
self.color = 'cyan'
def reset(self, destination=None):
pass
def update(self, t):
pass
def get_state(self):
return self.state
def get_next_waypoint(self):
return self.next_waypoint
class DummyAgent(Agent):
color_choices = ['blue', 'cyan', 'magenta', 'orange']
def __init__(self, env):
super(DummyAgent, self).__init__(env) # sets self.env = env, state = None, next_waypoint = None, and a default color
self.next_waypoint = random.choice(Environment.valid_actions[1:])
self.color = random.choice(self.color_choices)
def update(self, t):
inputs = self.env.sense(self)
action_okay = True
if self.next_waypoint == 'right':
if inputs['light'] == 'red' and inputs['left'] == 'forward':
action_okay = False
elif self.next_waypoint == 'forward':
if inputs['light'] == 'red':
action_okay = False
elif self.next_waypoint == 'left':
if inputs['light'] == 'red' or (inputs['oncoming'] == 'forward' or inputs['oncoming'] == 'right'):
action_okay = False
action = None
if action_okay:
action = self.next_waypoint
self.next_waypoint = random.choice(Environment.valid_actions[1:])
reward = self.env.act(self, action)
#print "DummyAgent.update(): t = {}, inputs = {}, action = {}, reward = {}".format(t, inputs, action, reward) # [debug]
#print "DummyAgent.update(): next_waypoint = {}".format(self.next_waypoint) # [debug]