forked from HandBrake/HandBrake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
oclscale.c
302 lines (259 loc) · 11.5 KB
/
oclscale.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/* oclscale.c
Copyright (c) 2003-2016 HandBrake Team
This file is part of the HandBrake source code
Homepage: <http://handbrake.fr/>.
It may be used under the terms of the GNU General Public License v2.
For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
Authors: Peng Gao <[email protected]> <http://www.multicorewareinc.com/>
Li Cao <[email protected]> <http://www.multicorewareinc.com/>
*/
#include <math.h>
#include "common.h"
#include "opencl.h"
#include "openclwrapper.h"
#define FILTER_LEN 4
#define _A -0.5f
cl_float cubic(cl_float x)
{
if (x < 0)
x = -x;
if (x < 1)
return (_A + 2.0f) * (x * x * x) - (_A + 3.0f) * (x * x) + 0 + 1;
else if (x < 2)
return (_A) * (x * x * x) - (5.0f * _A) * (x * x) + (8.0f * _A) * x - (4.0f * _A);
else
return 0;
}
cl_float *hb_bicubic_weights(cl_float scale, int length)
{
cl_float *weights = (cl_float*) malloc(length * sizeof(cl_float) * 4);
int i; // C rocks
cl_float *out = weights;
for (i = 0; i < length; ++i)
{
cl_float x = i / scale;
cl_float dx = x - (int)x;
*out++ = cubic(-dx - 1.0f);
*out++ = cubic(-dx);
*out++ = cubic(-dx + 1.0f);
*out++ = cubic(-dx + 2.0f);
}
return weights;
}
int setupScaleWeights(cl_float xscale, cl_float yscale, int width, int height, hb_oclscale_t *os, KernelEnv *kenv);
/**
* executive scale using opencl
* get filter args
* create output buffer
* create horizontal filter buffer
* create vertical filter buffer
* create kernels
*/
int hb_ocl_scale_func( void **data, KernelEnv *kenv )
{
cl_int status;
cl_mem in_buf = data[0];
cl_mem out_buf = data[1];
int crop_top = (intptr_t)data[2];
int crop_bottom = (intptr_t)data[3];
int crop_left = (intptr_t)data[4];
int crop_right = (intptr_t)data[5];
cl_int in_frame_w = (intptr_t)data[6];
cl_int in_frame_h = (intptr_t)data[7];
cl_int out_frame_w = (intptr_t)data[8];
cl_int out_frame_h = (intptr_t)data[9];
hb_oclscale_t *os = data[10];
hb_buffer_t *in = data[11];
hb_buffer_t *out = data[12];
if (hb_ocl == NULL)
{
hb_error("hb_ocl_scale_func: OpenCL support not available");
return 0;
}
if (os->initialized == 0)
{
hb_log( "Scaling With OpenCL" );
if (kenv->isAMD != 0)
hb_log( "Using Zero Copy");
// create the block kernel
cl_int status;
os->m_kernel = hb_ocl->clCreateKernel(kenv->program, "frame_scale", &status);
os->initialized = 1;
}
{
// Use the new kernel
cl_event events[5];
int eventCount = 0;
if (kenv->isAMD == 0) {
status = hb_ocl->clEnqueueUnmapMemObject(kenv->command_queue,
in->cl.buffer, in->data, 0,
NULL, &events[eventCount++]);
status = hb_ocl->clEnqueueUnmapMemObject(kenv->command_queue,
out->cl.buffer, out->data, 0,
NULL, &events[eventCount++]);
}
cl_int srcPlaneOffset0 = in->plane[0].data - in->data;
cl_int srcPlaneOffset1 = in->plane[1].data - in->data;
cl_int srcPlaneOffset2 = in->plane[2].data - in->data;
cl_int srcRowWords0 = in->plane[0].stride;
cl_int srcRowWords1 = in->plane[1].stride;
cl_int srcRowWords2 = in->plane[2].stride;
cl_int dstPlaneOffset0 = out->plane[0].data - out->data;
cl_int dstPlaneOffset1 = out->plane[1].data - out->data;
cl_int dstPlaneOffset2 = out->plane[2].data - out->data;
cl_int dstRowWords0 = out->plane[0].stride;
cl_int dstRowWords1 = out->plane[1].stride;
cl_int dstRowWords2 = out->plane[2].stride;
if (crop_top != 0 || crop_bottom != 0 || crop_left != 0 || crop_right != 0) {
srcPlaneOffset0 += crop_left + crop_top * srcRowWords0;
srcPlaneOffset1 += crop_left / 2 + (crop_top / 2) * srcRowWords1;
srcPlaneOffset2 += crop_left / 2 + (crop_top / 2) * srcRowWords2;
in_frame_w = in_frame_w - crop_right - crop_left;
in_frame_h = in_frame_h - crop_bottom - crop_top;
}
cl_float xscale = (out_frame_w * 1.0f) / in_frame_w;
cl_float yscale = (out_frame_h * 1.0f) / in_frame_h;
setupScaleWeights(xscale, yscale, out_frame_w, out_frame_h, os, kenv);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 0, sizeof(cl_mem), &out_buf);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 1, sizeof(cl_mem), &in_buf);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 2, sizeof(cl_float), &xscale);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 3, sizeof(cl_float), &yscale);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 4, sizeof(cl_int), &srcPlaneOffset0);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 5, sizeof(cl_int), &srcPlaneOffset1);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 6, sizeof(cl_int), &srcPlaneOffset2);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 7, sizeof(cl_int), &dstPlaneOffset0);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 8, sizeof(cl_int), &dstPlaneOffset1);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 9, sizeof(cl_int), &dstPlaneOffset2);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 10, sizeof(cl_int), &srcRowWords0);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 11, sizeof(cl_int), &srcRowWords1);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 12, sizeof(cl_int), &srcRowWords2);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 13, sizeof(cl_int), &dstRowWords0);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 14, sizeof(cl_int), &dstRowWords1);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 15, sizeof(cl_int), &dstRowWords2);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 16, sizeof(cl_int), &in_frame_w);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 17, sizeof(cl_int), &in_frame_h);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 18, sizeof(cl_int), &out_frame_w);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 19, sizeof(cl_int), &out_frame_h);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 20, sizeof(cl_mem), &os->bicubic_x_weights);
HB_OCL_CHECK(hb_ocl->clSetKernelArg, os->m_kernel, 21, sizeof(cl_mem), &os->bicubic_y_weights);
size_t workOffset[] = { 0, 0, 0 };
size_t globalWorkSize[] = { 1, 1, 1 };
size_t localWorkSize[] = { 1, 1, 1 };
int xgroups = (out_frame_w + 63) / 64;
int ygroups = (out_frame_h + 15) / 16;
localWorkSize[0] = 64;
localWorkSize[1] = 1;
localWorkSize[2] = 1;
globalWorkSize[0] = xgroups * 64;
globalWorkSize[1] = ygroups;
globalWorkSize[2] = 3;
HB_OCL_CHECK(hb_ocl->clEnqueueNDRangeKernel, kenv->command_queue,
os->m_kernel, 3, workOffset, globalWorkSize, localWorkSize,
eventCount, eventCount == 0 ? NULL : &events[0], &events[eventCount]);
++eventCount;
if (kenv->isAMD == 0) {
in->data = hb_ocl->clEnqueueMapBuffer(kenv->command_queue, in->cl.buffer,
CL_FALSE, CL_MAP_READ|CL_MAP_WRITE,
0, in->alloc,
eventCount ? 1 : 0,
eventCount ? &events[eventCount - 1] : NULL,
&events[eventCount], &status);
out->data = hb_ocl->clEnqueueMapBuffer(kenv->command_queue, out->cl.buffer,
CL_FALSE, CL_MAP_READ|CL_MAP_WRITE,
0, out->alloc,
eventCount ? 1 : 0,
eventCount ? &events[eventCount - 1] : NULL,
&events[eventCount + 1], &status);
eventCount += 2;
}
hb_ocl->clFlush(kenv->command_queue);
hb_ocl->clWaitForEvents(eventCount, &events[0]);
int i;
for (i = 0; i < eventCount; ++i)
{
hb_ocl->clReleaseEvent(events[i]);
}
}
return 1;
}
int setupScaleWeights(cl_float xscale, cl_float yscale, int width, int height, hb_oclscale_t *os, KernelEnv *kenv)
{
cl_int status;
if (hb_ocl == NULL)
{
hb_error("setupScaleWeights: OpenCL support not available");
return 1;
}
if (os->xscale != xscale || os->width < width)
{
cl_float *xweights = hb_bicubic_weights(xscale, width);
HB_OCL_BUF_FREE (hb_ocl, os->bicubic_x_weights);
HB_OCL_BUF_CREATE(hb_ocl, os->bicubic_x_weights, CL_MEM_READ_ONLY,
sizeof(cl_float) * width * 4);
HB_OCL_CHECK(hb_ocl->clEnqueueWriteBuffer, kenv->command_queue, os->bicubic_x_weights,
CL_TRUE, 0, sizeof(cl_float) * width * 4, xweights, 0, NULL, NULL);
os->width = width;
os->xscale = xscale;
free(xweights);
}
if ((os->yscale != yscale) || (os->height < height))
{
cl_float *yweights = hb_bicubic_weights(yscale, height);
HB_OCL_BUF_FREE (hb_ocl, os->bicubic_y_weights);
HB_OCL_BUF_CREATE(hb_ocl, os->bicubic_y_weights, CL_MEM_READ_ONLY,
sizeof(cl_float) * height * 4);
HB_OCL_CHECK(hb_ocl->clEnqueueWriteBuffer, kenv->command_queue, os->bicubic_y_weights,
CL_TRUE, 0, sizeof(cl_float) * height * 4, yweights, 0, NULL, NULL);
os->height = height;
os->yscale = yscale;
free(yweights);
}
return 0;
}
/**
* function describe: this function is used to scaling video frame. it uses the gausi scaling algorithm
* parameter:
* inputFrameBuffer: the source video frame opencl buffer
* outputdata: the destination video frame buffer
* inputWidth: the width of the source video frame
* inputHeight: the height of the source video frame
* outputWidth: the width of destination video frame
* outputHeight: the height of destination video frame
*/
static int s_scale_init_flag = 0;
int do_scale_init()
{
if ( s_scale_init_flag==0 )
{
int st = hb_register_kernel_wrapper( "frame_scale", hb_ocl_scale_func );
if( !st )
{
hb_log( "register kernel[%s] failed", "frame_scale" );
return 0;
}
s_scale_init_flag++;
}
return 1;
}
int hb_ocl_scale(hb_buffer_t *in, hb_buffer_t *out, int *crop, hb_oclscale_t *os)
{
void *data[13];
if (do_scale_init() == 0)
return 0;
data[0] = in->cl.buffer;
data[1] = out->cl.buffer;
data[2] = (void*)(intptr_t)(crop[0]);
data[3] = (void*)(intptr_t)(crop[1]);
data[4] = (void*)(intptr_t)(crop[2]);
data[5] = (void*)(intptr_t)(crop[3]);
data[6] = (void*)(intptr_t)(in->f.width);
data[7] = (void*)(intptr_t)(in->f.height);
data[8] = (void*)(intptr_t)(out->f.width);
data[9] = (void*)(intptr_t)(out->f.height);
data[10] = os;
data[11] = in;
data[12] = out;
if( !hb_run_kernel( "frame_scale", data ) )
hb_log( "run kernel[%s] failed", "frame_scale" );
return 0;
}