forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile
79 lines (65 loc) · 1.91 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
ARG cuda_version=9.0
ARG cudnn_version=7
FROM nvidia/cuda:${cuda_version}-cudnn${cudnn_version}-devel
# Install system packages
RUN apt-get update && apt-get install -y --no-install-recommends \
bzip2 \
g++ \
git \
graphviz \
libgl1-mesa-glx \
libhdf5-dev \
openmpi-bin \
wget && \
rm -rf /var/lib/apt/lists/*
# Install conda
ENV CONDA_DIR /opt/conda
ENV PATH $CONDA_DIR/bin:$PATH
RUN wget --quiet --no-check-certificate https://repo.continuum.io/miniconda/Miniconda3-4.2.12-Linux-x86_64.sh && \
echo "c59b3dd3cad550ac7596e0d599b91e75d88826db132e4146030ef471bb434e9a *Miniconda3-4.2.12-Linux-x86_64.sh" | sha256sum -c - && \
/bin/bash /Miniconda3-4.2.12-Linux-x86_64.sh -f -b -p $CONDA_DIR && \
rm Miniconda3-4.2.12-Linux-x86_64.sh && \
echo export PATH=$CONDA_DIR/bin:'$PATH' > /etc/profile.d/conda.sh
# Install Python packages and keras
ENV NB_USER keras
ENV NB_UID 1000
RUN useradd -m -s /bin/bash -N -u $NB_UID $NB_USER && \
chown $NB_USER $CONDA_DIR -R && \
mkdir -p /src && \
chown $NB_USER /src
USER $NB_USER
ARG python_version=3.6
RUN conda config --append channels conda-forge
RUN conda install -y python=${python_version} && \
pip install --upgrade pip && \
pip install \
sklearn_pandas \
tensorflow-gpu \
cntk-gpu && \
conda install \
bcolz \
h5py \
matplotlib \
mkl \
nose \
notebook \
Pillow \
pandas \
pydot \
pygpu \
pyyaml \
scikit-learn \
six \
theano \
mkdocs \
&& \
git clone git://github.com/keras-team/keras.git /src && pip install -e /src[tests] && \
pip install git+git://github.com/keras-team/keras.git && \
conda clean -yt
ADD theanorc /home/keras/.theanorc
ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8
ENV PYTHONPATH='/src/:$PYTHONPATH'
WORKDIR /data
EXPOSE 8888
CMD jupyter notebook --port=8888 --ip=0.0.0.0