forked from SoonminHwang/toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspBlkDiag.m
44 lines (41 loc) · 1.44 KB
/
spBlkDiag.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [B,inds] = spBlkDiag( A, inds )
% Creates a sparse block diagonal matrix from a 3D array.
%
% Given an [mxnxk] matrix A, construct a sparse block diagonal matrix B of
% dims [m*k x n*k], containing k blocks of size mxn each, where each block
% i is taken from A(:,:,i).
%
% When computing B, a time consuming step is to compute a series of
% indices. These indices are fixed for given dims of A and can be re-used.
% spBlkDiag's additional input/output can be used to cache these indices.
%
% USAGE
% [B, inds] = spBlkDiag( A, [inds] )
%
% INPUTS
% A - [m x n x k] input matrix of k mxn blocks
% inds - cached indices for faster computation
%
% OUTPUT
% B - [m*k x n*k] sparse block diagonal matrix with k mxn blocks
% inds - cached indices for faster computation
%
% EXAMPLE
% A=rand(3,4,2); B=spBlkDiag(A); full(B)
%
% See also SPARSE, BLKDIAG
%
% Piotr's Computer Vision Matlab Toolbox Version 2.35
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
[m,n,k]=size(A);
% compute the indices of the elements in the sparse matrix
if( nargin<2 || isempty(inds) || m~=inds.m || n~=inds.n || k~=inds.k )
ds=(1:m)'; rs=reshape(1:m*k,m,k); rs=rs(ds(:,ones(1,n)),:); rs=rs(:);
cs=1:n*k; cs=cs(ones(m,1),:); cs=cs(:);
inds=struct('m',m,'n',n,'k',k,'rs',rs,'cs',cs);
else
rs=inds.rs; cs=inds.cs;
end
% finally generate the sparse matrix
B=sparse(rs,cs,A(:),m*k,n*k);