-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask2_3.py
267 lines (200 loc) · 9.67 KB
/
task2_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import math
import sys
import json
import time
import numpy as np
import xgboost as xgb
from pyspark import SparkConf, SparkContext
def read_file(filepath):
rdd = sc.textFile(filepath)
return rdd
def calculate_avg(x, user_dict):
num_of_ratings = len(x[1])
sum = 0
for i in x[1]:
sum = sum + float(i[1])
avg = sum / num_of_ratings
return user_dict.get(x[0]), float(avg)
def calculate_numerator_denominator(corated_users, business_i, business_j, avg_rating_i, avg_rating_j):
numerator = 0
denominator_i = 0
denominator_j = 0
for user in corated_users:
user_rating_i = business_i.get(user)
user_rating_j = business_j.get(user)
numerator += (user_rating_i - avg_rating_i) * (user_rating_j - avg_rating_j)
denominator_i += ((user_rating_i - avg_rating_i) ** 2)
denominator_j += ((user_rating_j - avg_rating_j) ** 2)
denominator = math.sqrt(denominator_i) * math.sqrt(denominator_j)
return numerator,denominator
def calculate_similarity_quoteint(similarity, avg_rating_i, avg_rating_j, cur_user_rating):
avg_diff = abs(avg_rating_i - avg_rating_j)
if 0 <= avg_diff <= 1:
similarity_q = 1.0
similarity.append([similarity_q, similarity_q*cur_user_rating, abs(similarity_q)])
elif 1 < avg_diff <= 2:
similarity_q = 0.5
similarity.append([similarity_q, similarity_q*cur_user_rating, abs(similarity_q)])
else:
similarity_q = 0.0
similarity.append([similarity_q, similarity_q*cur_user_rating, abs(similarity_q)])
return similarity
def calculate_similarity(cur_user, cur_business, business_rated_cur_user, u_b_dict, business_avg_ratings):
similarity = []
business_i = dict(u_b_dict.get(cur_business))
users_rated_c = set(business_i.keys())
ci_avg = business_avg_ratings[cur_business]
avg_rating_i = ci_avg[1]
for y, business in enumerate(business_rated_cur_user):
business_j = dict(u_b_dict.get(business))
users_rated_b = set(business_j.keys())
bj_avg = business_avg_ratings[business]
avg_rating_j = bj_avg[1]
cur_user_rating = business_j.get(cur_user)
corated_users = users_rated_b & users_rated_c
if len(corated_users) > 1:
numerator, denominator = calculate_numerator_denominator(corated_users, business_i, business_j, avg_rating_i, avg_rating_j)
if numerator == 0 or denominator == 0:
similarity_q = 0.0
similarity.append([similarity_q, similarity_q*cur_user_rating, abs(similarity_q)])
elif numerator < 0 or denominator < 0:
continue
else:
similarity_q = numerator/denominator
similarity.append([similarity_q, similarity_q*cur_user_rating, abs(similarity_q)])
else:
similarity = calculate_similarity_quoteint(similarity, avg_rating_i, avg_rating_j, cur_user_rating)
return similarity
def calculate_predictions(x, train_users, user_list, train_businesses, business_list, utility_user_dict, utility_business_dict, business_avg_ratings, neighbours):
# Calculate similarity between pair of business_ids
cur_user, cur_business = x[0], x[1]
if cur_business not in business_list:
return 3.0
if cur_user not in user_list:
return 3.0
rated_cur_user_dict = dict(utility_user_dict.get(train_users.get(cur_user)))
business_rated_cur_user = rated_cur_user_dict.keys()
# Calculate Similarity with other businesses
similar_businesses = calculate_similarity(train_users.get(cur_user), train_businesses.get(cur_business), business_rated_cur_user, utility_business_dict, business_avg_ratings)
# Sort the list of similarity by value and pick top business_ids
similar_businesses.sort(reverse=True)
similar_businesses = similar_businesses[:neighbours]
similar_businesses_np = np.array(similar_businesses)
sum_similar_businesses = similar_businesses_np.sum(axis=0)
if sum_similar_businesses[1] == 0.0 or sum_similar_businesses[2] == 0.0:
return 0.0
prediction = sum_similar_businesses[1]/sum_similar_businesses[2]
return prediction
def generate_data(yelp_user_business, user_data_dict, business_data_dict, test_data=False):
data = yelp_user_business.map(lambda x: select_features(x, user_data_dict, business_data_dict, test_data)).collect()
data_np = np.array(data)
data_x = data_np[:, 2: -1]
data_y = data_np[:, -1]
x = np.array(data_x, dtype='float')
y = np.array(data_y, dtype='float')
return x, y
def select_features(x, business_data_dict, user_data_dict, test_features=False):
user, business = x[0], x[1]
if (user not in user_data_dict.keys() or business not in business_data_dict.keys()):
return [user, business, None, None, None, None, None]
if test_features:
rating = -1.0
else:
rating = x[2]
user_review_count, user_average_stars = user_data_dict.get(user)
business_review_count, business_average_stars = business_data_dict.get(business)
return[str(user), str(business), float(business_review_count), float(business_average_stars), float(user_review_count), float(user_average_stars), float(rating)]
REGRESSION_LINEAR = 'reg:linear'
conf = SparkConf().setAppName("HW3-Task2_2")
sc = SparkContext(conf=conf)
sc.setLogLevel('ERROR')
folder_path = sys.argv[1]
test_file_name = sys.argv[2]
output_file_name = sys.argv[3]
start_time = time.time()
# Read file into an RDD
yelp_train_user_business = read_file(folder_path + 'yelp_train.csv')
yelp_test_user_business = read_file(test_file_name)
# Remove header
# Read User_id business_id ratings
header = yelp_train_user_business.first()
yelp_train_user_business = yelp_train_user_business.filter(lambda row: row != header)
yelp_train_user_business = yelp_train_user_business.map(lambda line: line.split(",")) \
.map(lambda x: (str(x[0]), str(x[1]), float(x[2])))
header = yelp_test_user_business.first()
yelp_test_user_business = yelp_test_user_business.filter(lambda row: row != header)
yelp_test_user_business = yelp_test_user_business.map(lambda line: line.split(",")) \
.map(lambda x: (str(x[0]), str(x[1]), float(x[2])))
# Task 2_1
# Encode users and business ids.
user_ids = yelp_train_user_business.map(lambda x: (x[0], 1)).reduceByKey(lambda x, y: x).map(lambda x: x[0]).distinct()
users = list(user_ids.collect())
users.sort()
user_dict = {}
for i, u in enumerate(list(users)):
user_dict[u] = i
business_ids = yelp_train_user_business.map(lambda x: (x[1], 1)).reduceByKey(lambda x, y: x).map(
lambda x: x[0]).distinct()
businesses = list(business_ids.collect())
businesses.sort()
business_dict = {}
for i, b in enumerate(list(businesses)):
business_dict[b] = i
# Make Business Utility Matrix
utility_business_matrix = yelp_train_user_business.map(lambda x: (business_dict.get(x[1]), [(user_dict.get(str(x[0])), x[2])])) \
.reduceByKey(lambda x, y: x + y) \
.map(lambda x: x) \
.sortBy(lambda x: x[0])
utility_business_dict = {}
for i, j in utility_business_matrix.collect():
utility_business_dict[i] = j
# Make User Utility Matrix
utility_user_matrix = yelp_train_user_business.map(lambda x: (user_dict.get(x[0]), [(business_dict.get(str(x[1])), x[2])])) \
.reduceByKey(lambda x, y: x + y) \
.map(lambda x: x) \
.sortBy(lambda x: x[0])
utility_user_dict = {}
for i, j in utility_user_matrix.collect():
utility_user_dict[i] = j
# Calculate average rating for business
# Calculate co-rated weight
business_avg_ratings = utility_business_matrix.map(lambda x: calculate_avg(x, user_dict)).collect()
neighbours=80
# Calculate weighted average for pair of business ids
predictions_Item_based = yelp_test_user_business.map(lambda x: calculate_predictions(x, user_dict, users, business_dict, businesses,
utility_user_dict, utility_business_dict, business_avg_ratings, neighbours)).collect()
predictions_Item_based_np = np.asarray(predictions_Item_based, dtype = 'float')
# Task 2_2
# Read feature files
business = read_file(folder_path + 'business.json')
business_data = business.map(lambda x: json.loads(x)).map(lambda x: (
(str(x['business_id'])), (float(x['review_count']), float(x['stars'])))).collect()
business_data_dict = dict(business_data)
user = read_file(folder_path + 'user.json')
user_data = user.map(lambda x: json.loads(x)).map(lambda x: (
(str(x['user_id'])), (float(x['review_count']), float(x['average_stars'])))).collect()
user_data_dict = dict(user_data)
# Generate Training Data
train_data_x, train_data_y = generate_data(yelp_train_user_business, user_data_dict, business_data_dict)
# Train model using training data
xgbModel = xgb.XGBRegressor(objective=REGRESSION_LINEAR)
xgbModel.fit(train_data_x, train_data_y)
# Generate Test Data
test_data = yelp_test_user_business.map(lambda x: select_features(x, user_data_dict, business_data_dict, True)).collect()
test_data_np = np.array(test_data)
test_data_x, test_data_y = generate_data(yelp_test_user_business, user_data_dict, business_data_dict, True)
# Predict model using training data
predictions_xgboost = xgbModel.predict(test_data_x)
predictions_xgboost_to_be_printed = np.c_[test_data_np[:, : 2], predictions_xgboost]
# Make the weighted predictions.
hybrid_prediction = 0.10 * predictions_Item_based_np + 0.90 * predictions_xgboost
predictions_to_be_printed = np.c_[test_data_np[:, : 2], hybrid_prediction]
# Write contents into file
file = open(output_file_name, 'w')
file.write("user_id, business_id, prediction")
file.write("\n")
for p in predictions_to_be_printed:
file.write(str(p[0]) + "," + str(p[1]) + "," + str(p[2]) + "\n")
file.close()
stop_time = time.time()
print("Duration" + str(stop_time - start_time))