forked from namisan/mt-dnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calc_metrics.py
executable file
·56 lines (43 loc) · 1.67 KB
/
calc_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse
from data_utils import load_data, load_score_file
from data_utils.metrics import calc_metrics
from experiments.exp_def import TaskDefs
parser = argparse.ArgumentParser()
parser.add_argument(
"--task_def", type=str, default="experiments/glue/glue_task_def.yml"
)
parser.add_argument("--task", type=str)
parser.add_argument("--std_input", type=str)
parser.add_argument("--score", type=str)
def generate_golds_predictions_scores(sample_id_2_pred_score_seg_dic, sample_objs):
sample_id_2_label_dic = {}
for sample_obj in sample_objs:
sample_id, label = sample_obj["uid"], sample_obj["label"]
sample_id_2_label_dic[sample_id] = label
assert set(sample_id_2_label_dic.keys()) == set(
sample_id_2_pred_score_seg_dic.keys()
)
golds = []
predictions = []
scores = []
for sample_id, label in sample_id_2_label_dic.items():
golds.append(label)
pred, score_seg = sample_id_2_pred_score_seg_dic[sample_id]
predictions.append(pred)
scores.extend(score_seg)
return golds, predictions, scores
args = parser.parse_args()
task_def_path = args.task_def
task_defs = TaskDefs(task_def_path)
task_def = task_defs.get_task_def(args.task)
n_class = task_def.n_class
sample_id_2_pred_score_seg_dic = load_score_file(args.score, n_class)
data_type = task_def.data_type
task_type = task_def.task_type
label_mapper = task_def.label_vocab
sample_objs = load_data(args.std_input, data_type, task_type, label_mapper)
golds, predictions, scores = generate_golds_predictions_scores(
sample_id_2_pred_score_seg_dic, sample_objs
)
metrics = calc_metrics(task_def.metric_meta, golds, predictions, scores)
print(metrics)