forked from openlayers/openlayers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage-filter.js
145 lines (129 loc) · 3.29 KB
/
image-filter.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
goog.require('ol.Map');
goog.require('ol.View');
goog.require('ol.layer.Tile');
goog.require('ol.proj');
goog.require('ol.source.BingMaps');
var key = 'Ak-dzM4wZjSqTlzveKz5u0d4IQ4bRzVI309GxmkgSVr1ewS6iPSrOvOKhA-CJlm3';
var imagery = new ol.layer.Tile({
source: new ol.source.BingMaps({key: key, imagerySet: 'Aerial'})
});
var map = new ol.Map({
layers: [imagery],
target: 'map',
view: new ol.View({
center: ol.proj.fromLonLat([-120, 50]),
zoom: 6
})
});
var kernels = {
none: [
0, 0, 0,
0, 1, 0,
0, 0, 0
],
sharpen: [
0, -1, 0,
-1, 5, -1,
0, -1, 0
],
sharpenless: [
0, -1, 0,
-1, 10, -1,
0, -1, 0
],
blur: [
1, 1, 1,
1, 1, 1,
1, 1, 1
],
shadow: [
1, 2, 1,
0, 1, 0,
-1, -2, -1
],
emboss: [
-2, 1, 0,
-1, 1, 1,
0, 1, 2
],
edge: [
0, 1, 0,
1, -4, 1,
0, 1, 0
]
};
function normalize(kernel) {
var len = kernel.length;
var normal = new Array(len);
var i, sum = 0;
for (i = 0; i < len; ++i) {
sum += kernel[i];
}
if (sum <= 0) {
normal.normalized = false;
sum = 1;
} else {
normal.normalized = true;
}
for (i = 0; i < len; ++i) {
normal[i] = kernel[i] / sum;
}
return normal;
}
var select = document.getElementById('kernel');
var selectedKernel = normalize(kernels[select.value]);
/**
* Update the kernel and re-render on change.
*/
select.onchange = function() {
selectedKernel = normalize(kernels[select.value]);
map.render();
};
/**
* Apply a filter on "postcompose" events.
*/
imagery.on('postcompose', function(event) {
convolve(event.context, selectedKernel);
});
/**
* Apply a convolution kernel to canvas. This works for any size kernel, but
* performance starts degrading above 3 x 3.
* @param {CanvasRenderingContext2D} context Canvas 2d context.
* @param {Array.<number>} kernel Kernel.
*/
function convolve(context, kernel) {
var canvas = context.canvas;
var width = canvas.width;
var height = canvas.height;
var size = Math.sqrt(kernel.length);
var half = Math.floor(size / 2);
var inputData = context.getImageData(0, 0, width, height).data;
var output = context.createImageData(width, height);
var outputData = output.data;
for (var pixelY = 0; pixelY < height; ++pixelY) {
var pixelsAbove = pixelY * width;
for (var pixelX = 0; pixelX < width; ++pixelX) {
var r = 0, g = 0, b = 0, a = 0;
for (var kernelY = 0; kernelY < size; ++kernelY) {
for (var kernelX = 0; kernelX < size; ++kernelX) {
var weight = kernel[kernelY * size + kernelX];
var neighborY = Math.min(
height - 1, Math.max(0, pixelY + kernelY - half));
var neighborX = Math.min(
width - 1, Math.max(0, pixelX + kernelX - half));
var inputIndex = (neighborY * width + neighborX) * 4;
r += inputData[inputIndex] * weight;
g += inputData[inputIndex + 1] * weight;
b += inputData[inputIndex + 2] * weight;
a += inputData[inputIndex + 3] * weight;
}
}
var outputIndex = (pixelsAbove + pixelX) * 4;
outputData[outputIndex] = r;
outputData[outputIndex + 1] = g;
outputData[outputIndex + 2] = b;
outputData[outputIndex + 3] = kernel.normalized ? a : 255;
}
}
context.putImageData(output, 0, 0);
}