forked from Jpvmello/type-identification-mri-sequences
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
executable file
·113 lines (94 loc) · 3.73 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
import torchvision
# from torchvision.models.video.resnet import BasicStem
def select_net(architecture, n_slices, is_3d, consider_other_class):
num_classes = 5 if consider_other_class else 4
if architecture == "resnet18":
return resnet18(n_slices, num_classes, is_3d)
if architecture == "alexnet":
return alexnet(n_slices, num_classes)
if architecture == "vgg":
return vgg(n_slices, num_classes)
if architecture == "squeezenet":
return squeezenet(n_slices, num_classes)
if architecture == "mobilenet":
return mobilenet(n_slices, num_classes)
def resnet18(n_slices, num_classes, is_3d):
if is_3d:
net = torchvision.models.video.r3d_18(num_classes=num_classes)
net.stem = nn.Sequential(
nn.Conv3d(
1,
64,
kernel_size=(3, 7, 7),
stride=(1, 2, 2),
padding=(1, 3, 3),
bias=False,
),
nn.BatchNorm3d(
64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
),
nn.ReLU(inplace=True),
)
else:
net = torchvision.models.resnet18(num_classes=num_classes)
net.conv1 = nn.Conv2d(
n_slices, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
)
# net.layer3 = nn.Identity()
# net.layer4 = nn.Identity()
net.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True)
return net
def alexnet(n_slices, num_classes):
net = torchvision.models.alexnet(num_classes=num_classes)
net.features[0] = nn.Conv2d(
n_slices, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)
)
net.classifier[-1] = nn.Linear(
in_features=4096, out_features=num_classes, bias=True
)
return net
def vgg(n_slices, num_classes):
net = torchvision.models.vgg16(num_classes=num_classes)
net.features[0] = nn.Conv2d(
n_slices, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
net.classifier[-1] = nn.Linear(
in_features=4096, out_features=num_classes, bias=True
)
return net
def squeezenet(n_slices, num_classes):
net = torchvision.models.vgg16(num_classes=num_classes)
net.features[0] = nn.Conv2d(n_slices, 64, kernel_size=(3, 3), stride=(2, 2))
# net.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1))
return net
def mobilenet(n_slices, num_classes):
net = torchvision.models.mobilenet_v2(num_classes=num_classes)
net.features[0][0] = nn.Conv2d(
n_slices, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
)
# net.classifier[-1] = nn.Linear(in_features=1280, out_features=num_classes, bias=True)
return net
class Net(nn.Module):
def __init__(self, n_slices):
super(Net, self).__init__()
self.axial = torchvision.models.resnet18(num_classes=5)
self.axial.conv1 = nn.Conv2d(
n_slices, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
)
self.axial.layer3 = nn.Identity()
self.axial.layer4 = nn.Identity()
self.axial.fc = nn.Identity()
self.longitud = torchvision.models.resnet18(num_classes=5)
self.longitud.conv1 = nn.Conv2d(
200, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
)
self.longitud.layer3 = nn.Identity()
self.longitud.layer4 = nn.Identity()
self.longitud.fc = nn.Identity()
self.fc = nn.Linear(in_features=256, out_features=5, bias=True)
def forward(self, x):
ax = self.axial(x)
lg = self.longitud(torch.transpose(x, 1, 3))
return self.fc(torch.cat((ax, lg), 1))