forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom_boxplot.Rd
139 lines (119 loc) · 4.7 KB
/
geom_boxplot.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
\name{geom_boxplot}
\alias{geom_boxplot}
\title{Box and whiskers plot.}
\usage{
geom_boxplot(mapping = NULL, data = NULL,
stat = "boxplot", position = "dodge",
outlier.colour = "black", outlier.shape = 16,
outlier.size = 2, notch = FALSE, notchwidth = 0.5, ...)
}
\arguments{
\item{outlier.colour}{colour for outlying points}
\item{outlier.shape}{shape of outlying points}
\item{outlier.size}{size of outlying points}
\item{notch}{if \code{FALSE} (default) make a standard
box plot. If \code{TRUE}, make a notched box plot.
Notches are used to compare groups; if the notches of two
boxes do not overlap, this is strong evidence that the
medians differ.}
\item{notchwidth}{for a notched box plot, width of the
notch relative to the body (default 0.5)}
\item{mapping}{The aesthetic mapping, usually constructed
with \code{\link{aes}} or \code{\link{aes_string}}. Only
needs to be set at the layer level if you are overriding
the plot defaults.}
\item{data}{A layer specific dataset - only needed if you
want to override the plot defaults.}
\item{stat}{The statistical transformation to use on the
data for this layer.}
\item{position}{The position adjustment to use for
overlappling points on this layer}
\item{...}{other arguments passed on to
\code{\link{layer}}. This can include aesthetics whose
values you want to set, not map. See \code{\link{layer}}
for more details.}
}
\description{
The upper and lower "hinges" correspond to the first and
third quartiles (the 25th and 75th percentiles). This
differs slightly from the method used by the
\code{boxplot} function, and may be apparent with small
samples. See \code{\link{boxplot.stats}} for for more
information on how hinge positions are calculated for
\code{boxplot}.
}
\details{
The upper whisker extends from the hinge to the highest
value that is within 1.5 * IQR of the hinge, where IQR is
the inter-quartile range, or distance between the first
and third quartiles. The lower whisker extends from the
hinge to the lowest value within 1.5 * IQR of the hinge.
Data beyond the end of the whiskers are outliers and
plotted as points (as specified by Tukey).
In a notched box plot, the notches extend \code{1.58 *
IQR / sqrt(n)}. This gives a roughly 95% confidence
interval for comparing medians. See McGill et al. (1978)
for more details.
}
\section{Aesthetics}{
\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom",
"boxplot")}
}
\examples{
\donttest{
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_boxplot()
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot")
p + geom_boxplot() + geom_jitter()
p + geom_boxplot() + coord_flip()
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot") +
coord_flip()
p + geom_boxplot(notch = TRUE)
p + geom_boxplot(notch = TRUE, notchwidth = .3)
p + geom_boxplot(outlier.colour = "green", outlier.size = 3)
# Add aesthetic mappings
# Note that boxplots are automatically dodged when any aesthetic is
# a factor
p + geom_boxplot(aes(fill = cyl))
p + geom_boxplot(aes(fill = factor(cyl)))
p + geom_boxplot(aes(fill = factor(vs)))
p + geom_boxplot(aes(fill = factor(am)))
# Set aesthetics to fixed value
p + geom_boxplot(fill = "grey80", colour = "#3366FF")
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot",
colour = I("#3366FF"))
# Scales vs. coordinate transforms -------
# Scale transformations occur before the boxplot statistics are computed.
# Coordinate transformations occur afterwards. Observe the effect on the
# number of outliers.
library(plyr) # to access round_any
m <- ggplot(movies, aes(y = votes, x = rating,
group = round_any(rating, 0.5)))
m + geom_boxplot()
m + geom_boxplot() + scale_y_log10()
m + geom_boxplot() + coord_trans(y = "log10")
m + geom_boxplot() + scale_y_log10() + coord_trans(y = "log10")
# Boxplots with continuous x:
# Use the group aesthetic to group observations in boxplots
qplot(year, budget, data = movies, geom = "boxplot")
qplot(year, budget, data = movies, geom = "boxplot",
group = round_any(year, 10, floor))
# Using precomputed statistics
# generate sample data
abc <- adply(matrix(rnorm(100), ncol = 5), 2, quantile, c(0, .25, .5, .75, 1))
b <- ggplot(abc, aes(x = X1, ymin = `0\%`, lower = `25\%`, middle = `50\%`, upper = `75\%`, ymax = `100\%`))
b + geom_boxplot(stat = "identity")
b + geom_boxplot(stat = "identity") + coord_flip()
b + geom_boxplot(aes(fill = X1), stat = "identity")
}
}
\references{
McGill, R., Tukey, J. W. and Larsen, W. A. (1978)
Variations of box plots. The American Statistician 32,
12-16.
}
\seealso{
\code{\link{stat_quantile}} to view quantiles conditioned
on a continuous variable, \code{\link{geom_jitter}} for
another way to look at conditional distributions"
}