forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnippets.py
859 lines (690 loc) · 30.9 KB
/
snippets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
#!/usr/bin/env python
# Copyright 2016 Google, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates how to do basic operations using Cloud
Spanner.
For more information, see the README.rst under /spanner.
"""
import argparse
from google.cloud import spanner
from google.cloud.spanner_v1 import param_types
# [START spanner_create_database]
def create_database(instance_id, database_id):
"""Creates a database and tables for sample data."""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id, ddl_statements=[
"""CREATE TABLE Singers (
SingerId INT64 NOT NULL,
FirstName STRING(1024),
LastName STRING(1024),
SingerInfo BYTES(MAX)
) PRIMARY KEY (SingerId)""",
"""CREATE TABLE Albums (
SingerId INT64 NOT NULL,
AlbumId INT64 NOT NULL,
AlbumTitle STRING(MAX)
) PRIMARY KEY (SingerId, AlbumId),
INTERLEAVE IN PARENT Singers ON DELETE CASCADE"""
])
operation = database.create()
print('Waiting for operation to complete...')
operation.result()
print('Created database {} on instance {}'.format(
database_id, instance_id))
# [END spanner_create_database]
# [START spanner_insert_data]
def insert_data(instance_id, database_id):
"""Inserts sample data into the given database.
The database and table must already exist and can be created using
`create_database`.
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.batch() as batch:
batch.insert(
table='Singers',
columns=('SingerId', 'FirstName', 'LastName',),
values=[
(1, u'Marc', u'Richards'),
(2, u'Catalina', u'Smith'),
(3, u'Alice', u'Trentor'),
(4, u'Lea', u'Martin'),
(5, u'David', u'Lomond')])
batch.insert(
table='Albums',
columns=('SingerId', 'AlbumId', 'AlbumTitle',),
values=[
(1, 1, u'Total Junk'),
(1, 2, u'Go, Go, Go'),
(2, 1, u'Green'),
(2, 2, u'Forever Hold Your Peace'),
(2, 3, u'Terrified')])
print('Inserted data.')
# [END spanner_insert_data]
# [START spanner_query_data]
def query_data(instance_id, database_id):
"""Queries sample data from the database using SQL."""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
'SELECT SingerId, AlbumId, AlbumTitle FROM Albums')
for row in results:
print(u'SingerId: {}, AlbumId: {}, AlbumTitle: {}'.format(*row))
# [END spanner_query_data]
# [START spanner_read_data]
def read_data(instance_id, database_id):
"""Reads sample data from the database."""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
keyset = spanner.KeySet(all_=True)
results = snapshot.read(
table='Albums',
columns=('SingerId', 'AlbumId', 'AlbumTitle',),
keyset=keyset,)
for row in results:
print(u'SingerId: {}, AlbumId: {}, AlbumTitle: {}'.format(*row))
# [END spanner_read_data]
# [START spanner_read_stale_data]
def read_stale_data(instance_id, database_id):
"""Reads sample data from the database. The data is exactly 15 seconds
stale."""
import datetime
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
staleness = datetime.timedelta(seconds=15)
with database.snapshot(exact_staleness=staleness) as snapshot:
keyset = spanner.KeySet(all_=True)
results = snapshot.read(
table='Albums',
columns=('SingerId', 'AlbumId', 'MarketingBudget',),
keyset=keyset)
for row in results:
print(u'SingerId: {}, AlbumId: {}, MarketingBudget: {}'.format(
*row))
# [END spanner_read_stale_data]
# [START spanner_query_data_with_new_column]
def query_data_with_new_column(instance_id, database_id):
"""Queries sample data from the database using SQL.
This sample uses the `MarketingBudget` column. You can add the column
by running the `add_column` sample or by running this DDL statement against
your database:
ALTER TABLE Albums ADD COLUMN MarketingBudget INT64
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
'SELECT SingerId, AlbumId, MarketingBudget FROM Albums')
for row in results:
print(
u'SingerId: {}, AlbumId: {}, MarketingBudget: {}'.format(*row))
# [END spanner_query_data_with_new_column]
# [START spanner_create_index]
def add_index(instance_id, database_id):
"""Adds a simple index to the example database."""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
operation = database.update_ddl([
'CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)'])
print('Waiting for operation to complete...')
operation.result()
print('Added the AlbumsByAlbumTitle index.')
# [END spanner_create_index]
# [START spanner_query_data_with_index]
def query_data_with_index(
instance_id, database_id, start_title='Aardvark', end_title='Goo'):
"""Queries sample data from the database using SQL and an index.
The index must exist before running this sample. You can add the index
by running the `add_index` sample or by running this DDL statement against
your database:
CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)
This sample also uses the `MarketingBudget` column. You can add the column
by running the `add_column` sample or by running this DDL statement against
your database:
ALTER TABLE Albums ADD COLUMN MarketingBudget INT64
"""
from google.cloud.spanner_v1.proto import type_pb2
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
params = {
'start_title': start_title,
'end_title': end_title
}
param_types = {
'start_title': type_pb2.Type(code=type_pb2.STRING),
'end_title': type_pb2.Type(code=type_pb2.STRING)
}
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
"SELECT AlbumId, AlbumTitle, MarketingBudget "
"FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle} "
"WHERE AlbumTitle >= @start_title AND AlbumTitle < @end_title",
params=params, param_types=param_types)
for row in results:
print(
u'AlbumId: {}, AlbumTitle: {}, '
'MarketingBudget: {}'.format(*row))
# [END spanner_query_data_with_index]
# [START spanner_read_data_with_index]
def read_data_with_index(instance_id, database_id):
"""Reads sample data from the database using an index.
The index must exist before running this sample. You can add the index
by running the `add_index` sample or by running this DDL statement against
your database:
CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
keyset = spanner.KeySet(all_=True)
results = snapshot.read(
table='Albums',
columns=('AlbumId', 'AlbumTitle'),
keyset=keyset,
index='AlbumsByAlbumTitle')
for row in results:
print('AlbumId: {}, AlbumTitle: {}'.format(*row))
# [END spanner_read_data_with_index]
# [START spanner_create_storing_index]
def add_storing_index(instance_id, database_id):
"""Adds an storing index to the example database."""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
operation = database.update_ddl([
'CREATE INDEX AlbumsByAlbumTitle2 ON Albums(AlbumTitle)'
'STORING (MarketingBudget)'])
print('Waiting for operation to complete...')
operation.result()
print('Added the AlbumsByAlbumTitle2 index.')
# [END spanner_create_storing_index]
# [START spanner_read_data_with_storing_index]
def read_data_with_storing_index(instance_id, database_id):
"""Reads sample data from the database using an index with a storing
clause.
The index must exist before running this sample. You can add the index
by running the `add_soring_index` sample or by running this DDL statement
against your database:
CREATE INDEX AlbumsByAlbumTitle2 ON Albums(AlbumTitle)
STORING (MarketingBudget)
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
keyset = spanner.KeySet(all_=True)
results = snapshot.read(
table='Albums',
columns=('AlbumId', 'AlbumTitle', 'MarketingBudget'),
keyset=keyset,
index='AlbumsByAlbumTitle2')
for row in results:
print(
u'AlbumId: {}, AlbumTitle: {}, '
'MarketingBudget: {}'.format(*row))
# [END spanner_read_data_with_storing_index]
# [START spanner_add_column]
def add_column(instance_id, database_id):
"""Adds a new column to the Albums table in the example database."""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
operation = database.update_ddl([
'ALTER TABLE Albums ADD COLUMN MarketingBudget INT64'])
print('Waiting for operation to complete...')
operation.result()
print('Added the MarketingBudget column.')
# [END spanner_add_column]
# [START spanner_update_data]
def update_data(instance_id, database_id):
"""Updates sample data in the database.
This updates the `MarketingBudget` column which must be created before
running this sample. You can add the column by running the `add_column`
sample or by running this DDL statement against your database:
ALTER TABLE Albums ADD COLUMN MarketingBudget INT64
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.batch() as batch:
batch.update(
table='Albums',
columns=(
'SingerId', 'AlbumId', 'MarketingBudget'),
values=[
(1, 1, 100000),
(2, 2, 500000)])
print('Updated data.')
# [END spanner_update_data]
# [START spanner_read_write_transaction]
def read_write_transaction(instance_id, database_id):
"""Performs a read-write transaction to update two sample records in the
database.
This will transfer 200,000 from the `MarketingBudget` field for the second
Album to the first Album. If the `MarketingBudget` is too low, it will
raise an exception.
Before running this sample, you will need to run the `update_data` sample
to populate the fields.
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
def update_albums(transaction):
# Read the second album budget.
second_album_keyset = spanner.KeySet(keys=[(2, 2)])
second_album_result = transaction.read(
table='Albums', columns=('MarketingBudget',),
keyset=second_album_keyset, limit=1)
second_album_row = list(second_album_result)[0]
second_album_budget = second_album_row[0]
transfer_amount = 200000
if second_album_budget < 300000:
# Raising an exception will automatically roll back the
# transaction.
raise ValueError(
'The second album doesn\'t have enough funds to transfer')
# Read the first album's budget.
first_album_keyset = spanner.KeySet(keys=[(1, 1)])
first_album_result = transaction.read(
table='Albums', columns=('MarketingBudget',),
keyset=first_album_keyset, limit=1)
first_album_row = list(first_album_result)[0]
first_album_budget = first_album_row[0]
# Update the budgets.
second_album_budget -= transfer_amount
first_album_budget += transfer_amount
print(
'Setting first album\'s budget to {} and the second album\'s '
'budget to {}.'.format(
first_album_budget, second_album_budget))
# Update the rows.
transaction.update(
table='Albums',
columns=(
'SingerId', 'AlbumId', 'MarketingBudget'),
values=[
(1, 1, first_album_budget),
(2, 2, second_album_budget)])
database.run_in_transaction(update_albums)
print('Transaction complete.')
# [END spanner_read_write_transaction]
# [START spanner_read_only_transaction]
def read_only_transaction(instance_id, database_id):
"""Reads data inside of a read-only transaction.
Within the read-only transaction, or "snapshot", the application sees
consistent view of the database at a particular timestamp.
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot(multi_use=True) as snapshot:
# Read using SQL.
results = snapshot.execute_sql(
'SELECT SingerId, AlbumId, AlbumTitle FROM Albums')
print('Results from first read:')
for row in results:
print(u'SingerId: {}, AlbumId: {}, AlbumTitle: {}'.format(*row))
# Perform another read using the `read` method. Even if the data
# is updated in-between the reads, the snapshot ensures that both
# return the same data.
keyset = spanner.KeySet(all_=True)
results = snapshot.read(
table='Albums',
columns=('SingerId', 'AlbumId', 'AlbumTitle',),
keyset=keyset,)
print('Results from second read:')
for row in results:
print(u'SingerId: {}, AlbumId: {}, AlbumTitle: {}'.format(*row))
# [END spanner_read_only_transaction]
# [START spanner_create_table_with_timestamp_column]
def create_table_with_timestamp(instance_id, database_id):
"""Creates a table with a COMMIT_TIMESTAMP column."""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
operation = database.update_ddl([
"""CREATE TABLE Performances (
SingerId INT64 NOT NULL,
VenueId INT64 NOT NULL,
EventDate Date,
Revenue INT64,
LastUpdateTime TIMESTAMP NOT NULL
OPTIONS(allow_commit_timestamp=true)
) PRIMARY KEY (SingerId, VenueId, EventDate),
INTERLEAVE IN PARENT Singers ON DELETE CASCADE"""
])
print('Waiting for operation to complete...')
operation.result()
print('Created Performances table on database {} on instance {}'.format(
database_id, instance_id))
# [END spanner_create_table_with_timestamp_column]
# [START spanner_insert_data_with_timestamp_column]
def insert_data_with_timestamp(instance_id, database_id):
"""Inserts data with a COMMIT_TIMESTAMP field into a table. """
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.batch() as batch:
batch.insert(
table='Performances',
columns=(
'SingerId', 'VenueId', 'EventDate',
'Revenue', 'LastUpdateTime',),
values=[
(1, 4, "2017-10-05", 11000, spanner.COMMIT_TIMESTAMP),
(1, 19, "2017-11-02", 15000, spanner.COMMIT_TIMESTAMP),
(2, 42, "2017-12-23", 7000, spanner.COMMIT_TIMESTAMP)])
print('Inserted data.')
# [END spanner_insert_data_with_timestamp_column]
# [START spanner_add_timestamp_column]
def add_timestamp_column(instance_id, database_id):
""" Adds a new TIMESTAMP column to the Albums table in the example database.
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
operation = database.update_ddl([
'ALTER TABLE Albums ADD COLUMN LastUpdateTime TIMESTAMP '
'OPTIONS(allow_commit_timestamp=true)'])
print('Waiting for operation to complete...')
operation.result()
print('Altered table "Albums" on database {} on instance {}.'.format(
database_id, instance_id))
# [END spanner_add_timestamp_column]
# [START spanner_update_data_with_timestamp_column]
def update_data_with_timestamp(instance_id, database_id):
"""Updates Performances tables in the database with the COMMIT_TIMESTAMP
column.
This updates the `MarketingBudget` column which must be created before
running this sample. You can add the column by running the `add_column`
sample or by running this DDL statement against your database:
ALTER TABLE Albums ADD COLUMN MarketingBudget INT64
In addition this update expects the LastUpdateTime column added by
applying this DDL statement against your database:
ALTER TABLE Albums ADD COLUMN LastUpdateTime TIMESTAMP
OPTIONS(allow_commit_timestamp=true)
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.batch() as batch:
batch.update(
table='Albums',
columns=(
'SingerId', 'AlbumId', 'MarketingBudget', 'LastUpdateTime'),
values=[
(1, 1, 1000000, spanner.COMMIT_TIMESTAMP),
(2, 2, 750000, spanner.COMMIT_TIMESTAMP)])
print('Updated data.')
# [END spanner_update_data_with_timestamp_column]
# [START spanner_query_data_with_timestamp_column]
def query_data_with_timestamp(instance_id, database_id):
"""Queries sample data from the database using SQL.
This updates the `LastUpdateTime` column which must be created before
running this sample. You can add the column by running the
`add_timestamp_column` sample or by running this DDL statement
against your database:
ALTER TABLE Performances ADD COLUMN LastUpdateTime TIMESTAMP
OPTIONS (allow_commit_timestamp=true)
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
'SELECT SingerId, AlbumId, MarketingBudget FROM Albums '
'ORDER BY LastUpdateTime DESC')
for row in results:
print(u'SingerId: {}, AlbumId: {}, MarketingBudget: {}'.format(*row))
# [END spanner_query_data_with_timestamp_column]
# [START spanner_write_data_for_struct_queries]
def write_struct_data(instance_id, database_id):
"""Inserts sample data that can be used to test STRUCT parameters
in queries.
"""
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.batch() as batch:
batch.insert(
table='Singers',
columns=('SingerId', 'FirstName', 'LastName',),
values=[
(6, u'Elena', u'Campbell'),
(7, u'Gabriel', u'Wright'),
(8, u'Benjamin', u'Martinez'),
(9, u'Hannah', u'Harris')])
print('Inserted sample data for STRUCT queries')
# [END spanner_write_data_for_struct_queries]
def query_with_struct(instance_id, database_id):
"""Query a table using STRUCT parameters. """
# [START spanner_create_struct_with_data]
record_type = param_types.Struct([
param_types.StructField('FirstName', param_types.STRING),
param_types.StructField('LastName', param_types.STRING)
])
record_value = ('Elena', 'Campbell')
# [END spanner_create_struct_with_data]
# [START spanner_query_data_with_struct]
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
"SELECT SingerId FROM Singers WHERE "
"(FirstName, LastName) = @name",
params={'name': record_value},
param_types={'name': record_type})
for row in results:
print(u'SingerId: {}'.format(*row))
# [END spanner_query_data_with_struct]
def query_with_array_of_struct(instance_id, database_id):
"""Query a table using an array of STRUCT parameters. """
# [START spanner_create_user_defined_struct]
name_type = param_types.Struct([
param_types.StructField('FirstName', param_types.STRING),
param_types.StructField('LastName', param_types.STRING)])
# [END spanner_create_user_defined_struct]
# [START spanner_create_array_of_struct_with_data]
band_members = [("Elena", "Campbell"),
("Gabriel", "Wright"),
("Benjamin", "Martinez")]
# [END spanner_create_array_of_struct_with_data]
# [START spanner_query_data_with_array_of_struct]
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
"SELECT SingerId FROM Singers WHERE "
"STRUCT<FirstName STRING, LastName STRING>"
"(FirstName, LastName) IN UNNEST(@names)",
params={'names': band_members},
param_types={'names': param_types.Array(name_type)})
for row in results:
print(u'SingerId: {}'.format(*row))
# [END spanner_query_data_with_array_of_struct]
# [START spanner_field_access_on_struct_parameters]
def query_struct_field(instance_id, database_id):
"""Query a table using field access on a STRUCT parameter. """
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
name_type = param_types.Struct([
param_types.StructField('FirstName', param_types.STRING),
param_types.StructField('LastName', param_types.STRING)
])
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
"SELECT SingerId FROM Singers "
"WHERE FirstName = @name.FirstName",
params={'name': ("Elena", "Campbell")},
param_types={'name': name_type})
for row in results:
print(u'SingerId: {}'.format(*row))
# [START spanner_field_access_on_struct_parameters]
# [START spanner_field_access_on_nested_struct_parameters]
def query_nested_struct_field(instance_id, database_id):
"""Query a table using nested field access on a STRUCT parameter. """
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
song_info_type = param_types.Struct([
param_types.StructField('SongName', param_types.STRING),
param_types.StructField(
'ArtistNames', param_types.Array(
param_types.Struct([
param_types.StructField(
'FirstName', param_types.STRING),
param_types.StructField(
'LastName', param_types.STRING)
])
)
)
])
song_info = ('Imagination', [('Elena', 'Campbell'), ('Hannah', 'Harris')])
with database.snapshot() as snapshot:
results = snapshot.execute_sql(
"SELECT SingerId, @song_info.SongName "
"FROM Singers WHERE "
"STRUCT<FirstName STRING, LastName STRING>"
"(FirstName, LastName) "
"IN UNNEST(@song_info.ArtistNames)",
params={
'song_info': song_info
},
param_types={
'song_info': song_info_type
}
)
for row in results:
print(u'SingerId: {} SongName: {}'.format(*row))
# [END spanner_field_access_on_nested_struct_parameters]
if __name__ == '__main__': # noqa: C901
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
'instance_id', help='Your Cloud Spanner instance ID.')
parser.add_argument(
'--database-id', help='Your Cloud Spanner database ID.',
default='example_db')
subparsers = parser.add_subparsers(dest='command')
subparsers.add_parser('create_database', help=create_database.__doc__)
subparsers.add_parser('insert_data', help=insert_data.__doc__)
subparsers.add_parser('query_data', help=query_data.__doc__)
subparsers.add_parser('read_data', help=read_data.__doc__)
subparsers.add_parser('read_stale_data', help=read_stale_data.__doc__)
subparsers.add_parser('add_column', help=add_column.__doc__)
subparsers.add_parser('update_data', help=update_data.__doc__)
subparsers.add_parser(
'query_data_with_new_column', help=query_data_with_new_column.__doc__)
subparsers.add_parser(
'read_write_transaction', help=read_write_transaction.__doc__)
subparsers.add_parser(
'read_only_transaction', help=read_only_transaction.__doc__)
subparsers.add_parser('add_index', help=add_index.__doc__)
query_data_with_index_parser = subparsers.add_parser(
'query_data_with_index', help=query_data_with_index.__doc__)
query_data_with_index_parser.add_argument(
'--start_title', default='Aardvark')
query_data_with_index_parser.add_argument(
'--end_title', default='Goo')
subparsers.add_parser('read_data_with_index', help=insert_data.__doc__)
subparsers.add_parser('add_storing_index', help=add_storing_index.__doc__)
subparsers.add_parser(
'read_data_with_storing_index', help=insert_data.__doc__)
subparsers.add_parser(
'create_table_with_timestamp',
help=create_table_with_timestamp.__doc__)
subparsers.add_parser(
'insert_data_with_timestamp', help=insert_data_with_timestamp.__doc__)
subparsers.add_parser(
'add_timestamp_column', help=add_timestamp_column.__doc__)
subparsers.add_parser(
'update_data_with_timestamp', help=update_data_with_timestamp.__doc__)
subparsers.add_parser(
'query_data_with_timestamp', help=query_data_with_timestamp.__doc__)
subparsers.add_parser('write_struct_data', help=write_struct_data.__doc__)
subparsers.add_parser('query_with_struct', help=query_with_struct.__doc__)
subparsers.add_parser(
'query_with_array_of_struct', help=query_with_array_of_struct.__doc__)
subparsers.add_parser(
'query_struct_field', help=query_struct_field.__doc__)
subparsers.add_parser(
'query_nested_struct_field', help=query_nested_struct_field.__doc__)
args = parser.parse_args()
if args.command == 'create_database':
create_database(args.instance_id, args.database_id)
elif args.command == 'insert_data':
insert_data(args.instance_id, args.database_id)
elif args.command == 'query_data':
query_data(args.instance_id, args.database_id)
elif args.command == 'read_data':
read_data(args.instance_id, args.database_id)
elif args.command == 'read_stale_data':
read_stale_data(args.instance_id, args.database_id)
elif args.command == 'add_column':
add_column(args.instance_id, args.database_id)
elif args.command == 'update_data':
update_data(args.instance_id, args.database_id)
elif args.command == 'query_data_with_new_column':
query_data_with_new_column(args.instance_id, args.database_id)
elif args.command == 'read_write_transaction':
read_write_transaction(args.instance_id, args.database_id)
elif args.command == 'read_only_transaction':
read_only_transaction(args.instance_id, args.database_id)
elif args.command == 'add_index':
add_index(args.instance_id, args.database_id)
elif args.command == 'query_data_with_index':
query_data_with_index(
args.instance_id, args.database_id,
args.start_title, args.end_title)
elif args.command == 'read_data_with_index':
read_data_with_index(args.instance_id, args.database_id)
elif args.command == 'add_storing_index':
add_storing_index(args.instance_id, args.database_id)
elif args.command == 'read_data_with_storing_index':
read_data_with_storing_index(args.instance_id, args.database_id)
elif args.command == 'create_table_with_timestamp':
create_table_with_timestamp(args.instance_id, args.database_id)
elif args.command == 'insert_data_with_timestamp':
insert_data_with_timestamp(args.instance_id, args.database_id)
elif args.command == 'add_timestamp_column':
add_timestamp_column(args.instance_id, args.database_id)
elif args.command == 'update_data_with_timestamp':
update_data_with_timestamp(args.instance_id, args.database_id)
elif args.command == 'query_data_with_timestamp':
query_data_with_timestamp(args.instance_id, args.database_id)
elif args.command == 'write_struct_data':
write_struct_data(args.instance_id, args.database_id)
elif args.command == 'query_with_struct':
query_with_struct(args.instance_id, args.database_id)
elif args.command == 'query_with_array_of_struct':
query_with_array_of_struct(args.instance_id, args.database_id)
elif args.command == 'query_struct_field':
query_struct_field(args.instance_id, args.database_id)
elif args.command == 'query_nested_struct_field':
query_nested_struct_field(args.instance_id, args.database_id)