forked from liujiaheng/iclr_17_compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
249 lines (238 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import argparse
from model import *
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import json
import time
from datasets import Datasets, TestKodakDataset
from tensorboardX import SummaryWriter
from Meter import AverageMeter
torch.backends.cudnn.enabled = True
# gpu_num = 4
gpu_num = torch.cuda.device_count()
cur_lr = base_lr = 1e-4# * gpu_num
train_lambda = 8192
print_freq = 100
cal_step = 40
warmup_step = 0# // gpu_num
batch_size = 4
tot_epoch = 1000000
tot_step = 2500000
decay_interval = 2200000
lr_decay = 0.1
image_size = 256
logger = logging.getLogger("ImageCompression")
tb_logger = None
global_step = 0
save_model_freq = 50000
parser = argparse.ArgumentParser(description='Pytorch reimplement for variational image compression with a scale hyperprior')
parser.add_argument('-n', '--name', default='',
help='output training details')
parser.add_argument('-p', '--pretrain', default = '',
help='load pretrain model')
parser.add_argument('--test', action='store_true')
parser.add_argument('--config', dest='config', required=False,
help = 'hyperparameter in json format')
parser.add_argument('--seed', default=234, type=int, help='seed for random functions, and network initialization')
def parse_config(config):
config = json.load(open(args.config))
global tot_epoch, tot_step, base_lr, cur_lr, lr_decay, decay_interval, train_lambda, batch_size, \
print_freq, save_model_freq, cal_step
if 'tot_epoch' in config:
tot_epoch = config['tot_epoch']
if 'tot_step' in config:
tot_step = config['tot_step']
if 'train_lambda' in config:
train_lambda = config['train_lambda']
if 'batch_size' in config:
batch_size = config['batch_size']
if "print_freq" in config:
print_freq = config['print_freq']
if "save_model_freq" in config:
save_model_freq = config['save_model_freq']
if "cal_step" in config:
cal_step = config['cal_step']
if 'lr' in config:
if 'base' in config['lr']:
base_lr = config['lr']['base']
cur_lr = base_lr
if 'decay' in config['lr']:
lr_decay = config['lr']['decay']
if 'decay_interval' in config['lr']:
decay_interval = config['lr']['decay_interval']
def adjust_learning_rate(optimizer, global_step):
global cur_lr
global warmup_step
if global_step < warmup_step:
lr = base_lr * global_step / warmup_step
elif global_step < decay_interval:# // gpu_num:
lr = base_lr
else:
# lr = base_lr * (lr_decay ** (global_step // decay_interval))
lr = base_lr * lr_decay
cur_lr = lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(epoch, global_step):
logger.info("Epoch {} begin".format(epoch))
net.train()
global optimizer
elapsed, losses, psnrs, bpps, bpp_features, bpp_zs, mse_losses = [AverageMeter(print_freq) for _ in range(7)]
# model_time = 0
# compute_time = 0
# log_time = 0
for batch_idx, input in enumerate(train_loader):
start_time = time.time()
global_step += 1
# print("debug", torch.max(input), torch.min(input))
input = input.cuda()
clipped_recon_image, mse_loss, bpp = net(input)
# print("debug", clipped_recon_image.shape, " ", mse_loss.shape, " ", bpp.shape)
# print("debug", mse_loss, " ", bpp_feature, " ", bpp_z, " ", bpp)
distribution_loss = bpp
distortion = mse_loss
rd_loss = train_lambda * distortion + distribution_loss
optimizer.zero_grad()
rd_loss.backward()
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
clip_gradient(optimizer, 5)
optimizer.step()
# model_time += (time.time()-start_time)
if (global_step % cal_step) == 0:
# t0 = time.time()
if mse_loss.item() > 0:
psnr = 10 * (torch.log(1 * 1 / mse_loss) / np.log(10))
psnrs.update(psnr.item())
else:
psnrs.update(100)
# t1 = time.time()
elapsed.update(time.time() - start_time)
losses.update(rd_loss.item())
bpps.update(bpp.item())
mse_losses.update(mse_loss.item())
# t2 = time.time()
# compute_time += (t2 - t0)
if (global_step % print_freq) == 0:
# begin = time.time()
tb_logger.add_scalar('lr', cur_lr, global_step)
tb_logger.add_scalar('rd_loss', losses.avg, global_step)
tb_logger.add_scalar('psnr', psnrs.avg, global_step)
tb_logger.add_scalar('bpp', bpps.avg, global_step)
process = global_step / tot_step * 100.0
log = (' | '.join([
f'Step [{global_step}/{tot_step}={process:.2f}%]',
f'Epoch {epoch}',
f'Time {elapsed.val:.3f} ({elapsed.avg:.3f})',
f'Lr {cur_lr}',
f'Total Loss {losses.val:.3f} ({losses.avg:.3f})',
f'PSNR {psnrs.val:.3f} ({psnrs.avg:.3f})',
f'Bpp {bpps.val:.5f} ({bpps.avg:.5f})',
f'MSE {mse_losses.val:.5f} ({mse_losses.avg:.5f})',
]))
logger.info(log)
# log_time = time.time() - begin
# print("Log time", log_time)
# print("Compute time", compute_time)
# print("Model time", model_time)
if (global_step % save_model_freq) == 0:
save_model(model, global_step, save_path)
testKodak(global_step)
net.train()
return global_step
def testKodak(step):
with torch.no_grad():
test_dataset = TestKodakDataset(data_dir='/data1/liujiaheng/data/compression/kodak')
test_loader = DataLoader(dataset=test_dataset, shuffle=False, batch_size=1, pin_memory=True, num_workers=1)
net.eval()
sumBpp = 0
sumPsnr = 0
sumMsssim = 0
sumMsssimDB = 0
cnt = 0
for batch_idx, input in enumerate(test_loader):
input = input.cuda()
clipped_recon_image, mse_loss, bpp = net(input)
mse_loss = torch.mean((clipped_recon_image - input).pow(2))
mse_loss, bpp = \
torch.mean(mse_loss), torch.mean(bpp)
psnr = 10 * (torch.log(1. / mse_loss) / np.log(10))
sumBpp += bpp
sumPsnr += psnr
msssim = ms_ssim(clipped_recon_image.cpu().detach(), input.cpu(), data_range=1.0, size_average=True)
msssimDB = -10 * (torch.log(1-msssim) / np.log(10))
sumMsssimDB += msssimDB
sumMsssim += msssim
logger.info("Bpp:{:.6f}, PSNR:{:.6f}, MS-SSIM:{:.6f}, MS-SSIM-DB:{:.6f}".format(bpp, psnr, msssim, msssimDB))
cnt += 1
logger.info("Test on Kodak dataset: model-{}".format(step))
sumBpp /= cnt
sumPsnr /= cnt
sumMsssim /= cnt
sumMsssimDB /= cnt
logger.info("Dataset Average result---Bpp:{:.6f}, PSNR:{:.6f}, MS-SSIM:{:.6f}, MS-SSIM-DB:{:.6f}".format(sumBpp, sumPsnr, sumMsssim, sumMsssimDB))
if tb_logger !=None:
logger.info("Add tensorboard---Step:{}".format(step))
tb_logger.add_scalar("BPP_Test", sumBpp, step)
tb_logger.add_scalar("PSNR_Test", sumPsnr, step)
tb_logger.add_scalar("MS-SSIM_Test", sumMsssim, step)
tb_logger.add_scalar("MS-SSIM_DB_Test", sumMsssimDB, step)
else:
logger.info("No need to add tensorboard")
if __name__ == "__main__":
args = parser.parse_args()
torch.manual_seed(seed=args.seed)
formatter = logging.Formatter('%(asctime)s - %(levelname)s] %(message)s')
formatter = logging.Formatter('[%(asctime)s][%(filename)s][L%(lineno)d][%(levelname)s] %(message)s')
stdhandler = logging.StreamHandler()
stdhandler.setLevel(logging.INFO)
stdhandler.setFormatter(formatter)
logger.addHandler(stdhandler)
dd = 1
save_path = os.path.join('checkpoints', args.name)
if args.name != '':
os.makedirs(save_path, exist_ok=True)
filehandler = logging.FileHandler(os.path.join(save_path, 'log.txt'))
filehandler.setLevel(logging.INFO)
filehandler.setFormatter(formatter)
logger.addHandler(filehandler)
logger.setLevel(logging.INFO)
logger.info("image compression training")
logger.info("config : ")
logger.info(open(args.config).read())
parse_config(args.config)
model = ImageCompressor()
if args.pretrain != '':
logger.info("loading model:{}".format(args.pretrain))
global_step = load_model(model, args.pretrain)
net = model.cuda()
net = torch.nn.DataParallel(net, list(range(gpu_num)))
parameters = net.parameters()
if args.test:
testKodak(global_step)
exit(-1)
optimizer = optim.Adam(parameters, lr=base_lr)
# save_model(model, 0)
global train_loader
tb_logger = SummaryWriter(os.path.join(save_path, 'events'))
train_data_dir = '/data1/liujiaheng/data/compression/Flick_patch'
train_dataset = Datasets(train_data_dir, image_size)
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
num_workers=2)
steps_epoch = global_step // (len(train_dataset) // (batch_size))# * gpu_num))
save_model(model, global_step, save_path)
for epoch in range(steps_epoch, tot_epoch):
adjust_learning_rate(optimizer, global_step)
if global_step > tot_step:
save_model(model, global_step, save_path)
break
global_step = train(epoch, global_step)
save_model(model, global_step, save_path)