forked from s-macke/SAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender.c
executable file
·1105 lines (942 loc) · 30.8 KB
/
render.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "render.h"
#include "RenderTabs.h"
#include "debug.h"
extern int debug;
unsigned char wait1 = 7;
unsigned char wait2 = 6;
extern unsigned char A, X, Y;
extern unsigned char mem44;
extern unsigned char mem47;
extern unsigned char mem49;
extern unsigned char mem39;
extern unsigned char mem50;
extern unsigned char mem51;
extern unsigned char mem53;
extern unsigned char mem56;
extern unsigned char speed;
extern unsigned char pitch;
extern int singmode;
extern unsigned char phonemeIndexOutput[60]; //tab47296
extern unsigned char stressOutput[60]; //tab47365
extern unsigned char phonemeLengthOutput[60]; //tab47416
unsigned char pitches[256]; // tab43008
unsigned char frequency1[256];
unsigned char frequency2[256];
unsigned char frequency3[256];
unsigned char amplitude1[256];
unsigned char amplitude2[256];
unsigned char amplitude3[256];
unsigned char sampledConsonantFlag[256]; // tab44800
void AddInflection(unsigned char mem48, unsigned char phase1);
unsigned char trans(unsigned char mem39212, unsigned char mem39213);
// contains the final soundbuffer
extern int bufferpos;
extern char *buffer;
//timetable for more accurate c64 simulation
int timetable[5][5] =
{
{162, 167, 167, 127, 128},
{226, 60, 60, 0, 0},
{225, 60, 59, 0, 0},
{200, 0, 0, 54, 55},
{199, 0, 0, 54, 54}
};
static unsigned oldtimetableindex = 0;
void Output8BitAry(int index, unsigned char ary[5])
{
int k;
bufferpos += timetable[oldtimetableindex][index];
oldtimetableindex = index;
// write a little bit in advance
for(k=0; k<5; k++)
buffer[bufferpos/50 + k] = ary[k];
}
void Output8Bit(int index, unsigned char A)
{
unsigned char ary[5] = {A,A,A,A,A};
Output8BitAry(index, ary);
}
//written by me because of different table positions.
// mem[47] = ...
// 168=pitches
// 169=frequency1
// 170=frequency2
// 171=frequency3
// 172=amplitude1
// 173=amplitude2
// 174=amplitude3
unsigned char Read(unsigned char p, unsigned char Y)
{
switch(p)
{
case 168: return pitches[Y];
case 169: return frequency1[Y];
case 170: return frequency2[Y];
case 171: return frequency3[Y];
case 172: return amplitude1[Y];
case 173: return amplitude2[Y];
case 174: return amplitude3[Y];
}
printf("Error reading to tables");
return 0;
}
void Write(unsigned char p, unsigned char Y, unsigned char value)
{
switch(p)
{
case 168: pitches[Y] = value; return;
case 169: frequency1[Y] = value; return;
case 170: frequency2[Y] = value; return;
case 171: frequency3[Y] = value; return;
case 172: amplitude1[Y] = value; return;
case 173: amplitude2[Y] = value; return;
case 174: amplitude3[Y] = value; return;
}
printf("Error writing to tables\n");
}
// -------------------------------------------------------------------------
//Code48227
// Render a sampled sound from the sampleTable.
//
// Phoneme Sample Start Sample End
// 32: S* 15 255
// 33: SH 257 511
// 34: F* 559 767
// 35: TH 583 767
// 36: /H 903 1023
// 37: /X 1135 1279
// 38: Z* 84 119
// 39: ZH 340 375
// 40: V* 596 639
// 41: DH 596 631
//
// 42: CH
// 43: ** 399 511
//
// 44: J*
// 45: ** 257 276
// 46: **
//
// 66: P*
// 67: ** 743 767
// 68: **
//
// 69: T*
// 70: ** 231 255
// 71: **
//
// The SampledPhonemesTable[] holds flags indicating if a phoneme is
// voiced or not. If the upper 5 bits are zero, the sample is voiced.
//
// Samples in the sampleTable are compressed, with bits being converted to
// bytes from high bit to low, as follows:
//
// unvoiced 0 bit -> X
// unvoiced 1 bit -> 5
//
// voiced 0 bit -> 6
// voiced 1 bit -> 24
//
// Where X is a value from the table:
//
// { 0x18, 0x1A, 0x17, 0x17, 0x17 };
//
// The index into this table is determined by masking off the lower
// 3 bits from the SampledPhonemesTable:
//
// index = (SampledPhonemesTable[i] & 7) - 1;
//
// For voices samples, samples are interleaved between voiced output.
// Code48227()
void RenderSample(unsigned char *mem66)
{
int tempA;
// current phoneme's index
mem49 = Y;
// mask low three bits and subtract 1 get value to
// convert 0 bits on unvoiced samples.
A = mem39&7;
X = A-1;
// store the result
mem56 = X;
// determine which offset to use from table { 0x18, 0x1A, 0x17, 0x17, 0x17 }
// T, S, Z 0 0x18
// CH, J, SH, ZH 1 0x1A
// P, F*, V, TH, DH 2 0x17
// /H 3 0x17
// /X 4 0x17
// get value from the table
mem53 = tab48426[X];
mem47 = X; //46016+mem[56]*256
// voiced sample?
A = mem39 & 248;
if(A == 0)
{
// voiced phoneme: Z*, ZH, V*, DH
Y = mem49;
A = pitches[mem49] >> 4;
// jump to voiced portion
goto pos48315;
}
Y = A ^ 255;
pos48274:
// step through the 8 bits in the sample
mem56 = 8;
// get the next sample from the table
// mem47*256 = offset to start of samples
A = sampleTable[mem47*256+Y];
pos48280:
// left shift to get the high bit
tempA = A;
A = A << 1;
//48281: BCC 48290
// bit not set?
if ((tempA & 128) == 0)
{
// convert the bit to value from table
X = mem53;
//mem[54296] = X;
// output the byte
Output8Bit(1, (X&0x0f) * 16);
// if X != 0, exit loop
if(X != 0) goto pos48296;
}
// output a 5 for the on bit
Output8Bit(2, 5 * 16);
//48295: NOP
pos48296:
X = 0;
// decrement counter
mem56--;
// if not done, jump to top of loop
if (mem56 != 0) goto pos48280;
// increment position
Y++;
if (Y != 0) goto pos48274;
// restore values and return
mem44 = 1;
Y = mem49;
return;
unsigned char phase1;
pos48315:
// handle voiced samples here
// number of samples?
phase1 = A ^ 255;
Y = *mem66;
do
{
//pos48321:
// shift through all 8 bits
mem56 = 8;
//A = Read(mem47, Y);
// fetch value from table
A = sampleTable[mem47*256+Y];
// loop 8 times
//pos48327:
do
{
//48327: ASL A
//48328: BCC 48337
// left shift and check high bit
tempA = A;
A = A << 1;
if ((tempA & 128) != 0)
{
// if bit set, output 26
X = 26;
Output8Bit(3, (X&0xf)*16);
} else
{
//timetable 4
// bit is not set, output a 6
X=6;
Output8Bit(4, (X&0xf)*16);
}
mem56--;
} while(mem56 != 0);
// move ahead in the table
Y++;
// continue until counter done
phase1++;
} while (phase1 != 0);
// if (phase1 != 0) goto pos48321;
// restore values and return
A = 1;
mem44 = 1;
*mem66 = Y;
Y = mem49;
return;
}
// RENDER THE PHONEMES IN THE LIST
//
// The phoneme list is converted into sound through the steps:
//
// 1. Copy each phoneme <length> number of times into the frames list,
// where each frame represents 10 milliseconds of sound.
//
// 2. Determine the transitions lengths between phonemes, and linearly
// interpolate the values across the frames.
//
// 3. Offset the pitches by the fundamental frequency.
//
// 4. Render the each frame.
//void Code47574()
void Render()
{
unsigned char phase1 = 0; //mem43
unsigned char phase2=0;
unsigned char phase3=0;
unsigned char mem66=0;
unsigned char mem38=0;
unsigned char mem40=0;
unsigned char speedcounter=0; //mem45
unsigned char mem48=0;
int i;
if (phonemeIndexOutput[0] == 255) return; //exit if no data
A = 0;
X = 0;
mem44 = 0;
// CREATE FRAMES
//
// The length parameter in the list corresponds to the number of frames
// to expand the phoneme to. Each frame represents 10 milliseconds of time.
// So a phoneme with a length of 7 = 7 frames = 70 milliseconds duration.
//
// The parameters are copied from the phoneme to the frame verbatim.
// pos47587:
do
{
// get the index
Y = mem44;
// get the phoneme at the index
A = phonemeIndexOutput[mem44];
mem56 = A;
// if terminal phoneme, exit the loop
if (A == 255) break;
// period phoneme *.
if (A == 1)
{
// add rising inflection
A = 1;
mem48 = 1;
//goto pos48376;
AddInflection(mem48, phase1);
}
/*
if (A == 2) goto pos48372;
*/
// question mark phoneme?
if (A == 2)
{
// create falling inflection
mem48 = 255;
AddInflection(mem48, phase1);
}
// pos47615:
// get the stress amount (more stress = higher pitch)
phase1 = tab47492[stressOutput[Y] + 1];
// get number of frames to write
phase2 = phonemeLengthOutput[Y];
Y = mem56;
// copy from the source to the frames list
do
{
frequency1[X] = freq1data[Y]; // F1 frequency
frequency2[X] = freq2data[Y]; // F2 frequency
frequency3[X] = freq3data[Y]; // F3 frequency
amplitude1[X] = ampl1data[Y]; // F1 amplitude
amplitude2[X] = ampl2data[Y]; // F2 amplitude
amplitude3[X] = ampl3data[Y]; // F3 amplitude
sampledConsonantFlag[X] = sampledConsonantFlags[Y]; // phoneme data for sampled consonants
pitches[X] = pitch + phase1; // pitch
X++;
phase2--;
} while(phase2 != 0);
mem44++;
} while(mem44 != 0);
// -------------------
//pos47694:
// CREATE TRANSITIONS
//
// Linear transitions are now created to smoothly connect the
// end of one sustained portion of a phoneme to the following
// phoneme.
//
// To do this, three tables are used:
//
// Table Purpose
// ========= ==================================================
// blendRank Determines which phoneme's blend values are used.
//
// blendOut The number of frames at the end of the phoneme that
// will be used to transition to the following phoneme.
//
// blendIn The number of frames of the following phoneme that
// will be used to transition into that phoneme.
//
// In creating a transition between two phonemes, the phoneme
// with the HIGHEST rank is used. Phonemes are ranked on how much
// their identity is based on their transitions. For example,
// vowels are and diphthongs are identified by their sustained portion,
// rather than the transitions, so they are given low values. In contrast,
// stop consonants (P, B, T, K) and glides (Y, L) are almost entirely
// defined by their transitions, and are given high rank values.
//
// Here are the rankings used by SAM:
//
// Rank Type Phonemes
// 2 All vowels IY, IH, etc.
// 5 Diphthong endings YX, WX, ER
// 8 Terminal liquid consonants LX, WX, YX, N, NX
// 9 Liquid consonants L, RX, W
// 10 Glide R, OH
// 11 Glide WH
// 18 Voiceless fricatives S, SH, F, TH
// 20 Voiced fricatives Z, ZH, V, DH
// 23 Plosives, stop consonants P, T, K, KX, DX, CH
// 26 Stop consonants J, GX, B, D, G
// 27-29 Stop consonants (internal) **
// 30 Unvoiced consonants /H, /X and Q*
// 160 Nasal M
//
// To determine how many frames to use, the two phonemes are
// compared using the blendRank[] table. The phoneme with the
// higher rank is selected. In case of a tie, a blend of each is used:
//
// if blendRank[phoneme1] == blendRank[phomneme2]
// // use lengths from each phoneme
// outBlendFrames = outBlend[phoneme1]
// inBlendFrames = outBlend[phoneme2]
// else if blendRank[phoneme1] > blendRank[phoneme2]
// // use lengths from first phoneme
// outBlendFrames = outBlendLength[phoneme1]
// inBlendFrames = inBlendLength[phoneme1]
// else
// // use lengths from the second phoneme
// // note that in and out are SWAPPED!
// outBlendFrames = inBlendLength[phoneme2]
// inBlendFrames = outBlendLength[phoneme2]
//
// Blend lengths can't be less than zero.
//
// Transitions are assumed to be symetrical, so if the transition
// values for the second phoneme are used, the inBlendLength and
// outBlendLength values are SWAPPED.
//
// For most of the parameters, SAM interpolates over the range of the last
// outBlendFrames-1 and the first inBlendFrames.
//
// The exception to this is the Pitch[] parameter, which is interpolates the
// pitch from the CENTER of the current phoneme to the CENTER of the next
// phoneme.
//
// Here are two examples. First, For example, consider the word "SUN" (S AH N)
//
// Phoneme Duration BlendWeight OutBlendFrames InBlendFrames
// S 2 18 1 3
// AH 8 2 4 4
// N 7 8 1 2
//
// The formant transitions for the output frames are calculated as follows:
//
// flags ampl1 freq1 ampl2 freq2 ampl3 freq3 pitch
// ------------------------------------------------
// S
// 241 0 6 0 73 0 99 61 Use S (weight 18) for transition instead of AH (weight 2)
// 241 0 6 0 73 0 99 61 <-- (OutBlendFrames-1) = (1-1) = 0 frames
// AH
// 0 2 10 2 66 0 96 59 * <-- InBlendFrames = 3 frames
// 0 4 14 3 59 0 93 57 *
// 0 8 18 5 52 0 90 55 *
// 0 15 22 9 44 1 87 53
// 0 15 22 9 44 1 87 53
// 0 15 22 9 44 1 87 53 Use N (weight 8) for transition instead of AH (weight 2).
// 0 15 22 9 44 1 87 53 Since N is second phoneme, reverse the IN and OUT values.
// 0 11 17 8 47 1 98 56 * <-- (InBlendFrames-1) = (2-1) = 1 frames
// N
// 0 8 12 6 50 1 109 58 * <-- OutBlendFrames = 1
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
//
// Now, consider the reverse "NUS" (N AH S):
//
// flags ampl1 freq1 ampl2 freq2 ampl3 freq3 pitch
// ------------------------------------------------
// N
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61 Use N (weight 8) for transition instead of AH (weight 2)
// 0 5 6 5 54 0 121 61 <-- (OutBlendFrames-1) = (1-1) = 0 frames
// AH
// 0 8 11 6 51 0 110 59 * <-- InBlendFrames = 2
// 0 11 16 8 48 0 99 56 *
// 0 15 22 9 44 1 87 53 Use S (weight 18) for transition instead of AH (weight 2)
// 0 15 22 9 44 1 87 53 Since S is second phoneme, reverse the IN and OUT values.
// 0 9 18 5 51 1 90 55 * <-- (InBlendFrames-1) = (3-1) = 2
// 0 4 14 3 58 1 93 57 *
// S
// 241 2 10 2 65 1 96 59 * <-- OutBlendFrames = 1
// 241 0 6 0 73 0 99 61
A = 0;
mem44 = 0;
mem49 = 0; // mem49 starts at as 0
X = 0;
while(1) //while No. 1
{
// get the current and following phoneme
Y = phonemeIndexOutput[X];
A = phonemeIndexOutput[X+1];
X++;
// exit loop at end token
if (A == 255) break;//goto pos47970;
// get the ranking of each phoneme
X = A;
mem56 = blendRank[A];
A = blendRank[Y];
// compare the rank - lower rank value is stronger
if (A == mem56)
{
// same rank, so use out blend lengths from each phoneme
phase1 = outBlendLength[Y];
phase2 = outBlendLength[X];
} else
if (A < mem56)
{
// first phoneme is stronger, so us it's blend lengths
phase1 = inBlendLength[X];
phase2 = outBlendLength[X];
} else
{
// second phoneme is stronger, so use it's blend lengths
// note the out/in are swapped
phase1 = outBlendLength[Y];
phase2 = inBlendLength[Y];
}
Y = mem44;
A = mem49 + phonemeLengthOutput[mem44]; // A is mem49 + length
mem49 = A; // mem49 now holds length + position
A = A + phase2; //Maybe Problem because of carry flag
//47776: ADC 42
speedcounter = A;
mem47 = 168;
phase3 = mem49 - phase1; // what is mem49
A = phase1 + phase2; // total transition?
mem38 = A;
X = A;
X -= 2;
if ((X & 128) == 0)
do //while No. 2
{
//pos47810:
// mem47 is used to index the tables:
// 168 pitches[]
// 169 frequency1
// 170 frequency2
// 171 frequency3
// 172 amplitude1
// 173 amplitude2
// 174 amplitude3
mem40 = mem38;
if (mem47 == 168) // pitch
{
// unlike the other values, the pitches[] interpolates from
// the middle of the current phoneme to the middle of the
// next phoneme
unsigned char mem36, mem37;
// half the width of the current phoneme
mem36 = phonemeLengthOutput[mem44] >> 1;
// half the width of the next phoneme
mem37 = phonemeLengthOutput[mem44+1] >> 1;
// sum the values
mem40 = mem36 + mem37; // length of both halves
mem37 += mem49; // center of next phoneme
mem36 = mem49 - mem36; // center index of current phoneme
A = Read(mem47, mem37); // value at center of next phoneme - end interpolation value
//A = mem[address];
Y = mem36; // start index of interpolation
mem53 = A - Read(mem47, mem36); // value to center of current phoneme
} else
{
// value to interpolate to
A = Read(mem47, speedcounter);
// position to start interpolation from
Y = phase3;
// value to interpolate from
mem53 = A - Read(mem47, phase3);
}
//Code47503(mem40);
// ML : Code47503 is division with remainder, and mem50 gets the sign
// calculate change per frame
signed char m53 = (signed char)mem53;
mem50 = mem53 & 128;
unsigned char m53abs = abs(m53);
mem51 = m53abs % mem40; //abs((char)m53) % mem40;
mem53 = (unsigned char)((signed char)(m53) / mem40);
// interpolation range
X = mem40; // number of frames to interpolate over
Y = phase3; // starting frame
// linearly interpolate values
mem56 = 0;
//47907: CLC
//pos47908:
while(1) //while No. 3
{
A = Read(mem47, Y) + mem53; //carry alway cleared
mem48 = A;
Y++;
X--;
if(X == 0) break;
mem56 += mem51;
if (mem56 >= mem40) //???
{
mem56 -= mem40; //carry? is set
//if ((mem56 & 128)==0)
if ((mem50 & 128)==0)
{
//47935: BIT 50
//47937: BMI 47943
if(mem48 != 0) mem48++;
} else mem48--;
}
//pos47945:
Write(mem47, Y, mem48);
} //while No. 3
//pos47952:
mem47++;
//if (mem47 != 175) goto pos47810;
} while (mem47 != 175); //while No. 2
//pos47963:
mem44++;
X = mem44;
} //while No. 1
//goto pos47701;
//pos47970:
// add the length of this phoneme
mem48 = mem49 + phonemeLengthOutput[mem44];
// ASSIGN PITCH CONTOUR
//
// This subtracts the F1 frequency from the pitch to create a
// pitch contour. Without this, the output would be at a single
// pitch level (monotone).
// don't adjust pitch if in sing mode
if (!singmode)
{
// iterate through the buffer
for(i=0; i<256; i++) {
// subtract half the frequency of the formant 1.
// this adds variety to the voice
pitches[i] -= (frequency1[i] >> 1);
}
}
phase1 = 0;
phase2 = 0;
phase3 = 0;
mem49 = 0;
speedcounter = 72; //sam standard speed
// RESCALE AMPLITUDE
//
// Rescale volume from a linear scale to decibels.
//
//amplitude rescaling
for(i=255; i>=0; i--)
{
amplitude1[i] = amplitudeRescale[amplitude1[i]];
amplitude2[i] = amplitudeRescale[amplitude2[i]];
amplitude3[i] = amplitudeRescale[amplitude3[i]];
}
Y = 0;
A = pitches[0];
mem44 = A;
X = A;
mem38 = A - (A>>2); // 3/4*A ???
if (debug)
{
PrintOutput(sampledConsonantFlag, frequency1, frequency2, frequency3, amplitude1, amplitude2, amplitude3, pitches);
}
// PROCESS THE FRAMES
//
// In traditional vocal synthesis, the glottal pulse drives filters, which
// are attenuated to the frequencies of the formants.
//
// SAM generates these formants directly with sin and rectangular waves.
// To simulate them being driven by the glottal pulse, the waveforms are
// reset at the beginning of each glottal pulse.
//finally the loop for sound output
//pos48078:
while(1)
{
// get the sampled information on the phoneme
A = sampledConsonantFlag[Y];
mem39 = A;
// unvoiced sampled phoneme?
A = A & 248;
if(A != 0)
{
// render the sample for the phoneme
RenderSample(&mem66);
// skip ahead two in the phoneme buffer
Y += 2;
mem48 -= 2;
} else
{
// simulate the glottal pulse and formants
unsigned char ary[5];
unsigned int p1 = phase1 * 256; // Fixed point integers because we need to divide later on
unsigned int p2 = phase2 * 256;
unsigned int p3 = phase3 * 256;
int k;
for (k=0; k<5; k++) {
signed char sp1 = (signed char)sinus[0xff & (p1>>8)];
signed char sp2 = (signed char)sinus[0xff & (p2>>8)];
signed char rp3 = (signed char)rectangle[0xff & (p3>>8)];
signed int sin1 = sp1 * ((unsigned char)amplitude1[Y] & 0x0f);
signed int sin2 = sp2 * ((unsigned char)amplitude2[Y] & 0x0f);
signed int rect = rp3 * ((unsigned char)amplitude3[Y] & 0x0f);
signed int mux = sin1 + sin2 + rect;
mux /= 32;
mux += 128; // Go from signed to unsigned amplitude
ary[k] = mux;
p1 += frequency1[Y] * 256 / 4; // Compromise, this becomes a shift and works well
p2 += frequency2[Y] * 256 / 4;
p3 += frequency3[Y] * 256 / 4;
}
// output the accumulated value
Output8BitAry(0, ary);
speedcounter--;
if (speedcounter != 0) goto pos48155;
Y++; //go to next amplitude
// decrement the frame count
mem48--;
}
// if the frame count is zero, exit the loop
if(mem48 == 0) return;
speedcounter = speed;
pos48155:
// decrement the remaining length of the glottal pulse
mem44--;
// finished with a glottal pulse?
if(mem44 == 0)
{
pos48159:
// fetch the next glottal pulse length
A = pitches[Y];
mem44 = A;
A = A - (A>>2);
mem38 = A;
// reset the formant wave generators to keep them in
// sync with the glottal pulse
phase1 = 0;
phase2 = 0;
phase3 = 0;
continue;
}
// decrement the count
mem38--;
// is the count non-zero and the sampled flag is zero?
if((mem38 != 0) || (mem39 == 0))
{
// reset the phase of the formants to match the pulse
phase1 += frequency1[Y];
phase2 += frequency2[Y];
phase3 += frequency3[Y];
continue;
}
// voiced sampled phonemes interleave the sample with the
// glottal pulse. The sample flag is non-zero, so render
// the sample for the phoneme.
RenderSample(&mem66);
goto pos48159;
} //while
// The following code is never reached. It's left over from when
// the voiced sample code was part of this loop, instead of part
// of RenderSample();
//pos48315:
int tempA;
phase1 = A ^ 255;
Y = mem66;
do
{
//pos48321:
mem56 = 8;
A = Read(mem47, Y);
//pos48327:
do
{
//48327: ASL A
//48328: BCC 48337
tempA = A;
A = A << 1;
if ((tempA & 128) != 0)
{
X = 26;
// mem[54296] = X;
bufferpos += 150;
buffer[bufferpos/50] = (X & 15)*16;
} else
{
//mem[54296] = 6;
X=6;
bufferpos += 150;
buffer[bufferpos/50] = (X & 15)*16;
}
for(X = wait2; X>0; X--); //wait
mem56--;
} while(mem56 != 0);
Y++;
phase1++;
} while (phase1 != 0);
// if (phase1 != 0) goto pos48321;
A = 1;
mem44 = 1;
mem66 = Y;
Y = mem49;
return;
}
// Create a rising or falling inflection 30 frames prior to
// index X. A rising inflection is used for questions, and
// a falling inflection is used for statements.
void AddInflection(unsigned char mem48, unsigned char phase1)
{
//pos48372:
// mem48 = 255;
//pos48376:
// store the location of the punctuation
mem49 = X;
A = X;
int Atemp = A;
// backup 30 frames
A = A - 30;
// if index is before buffer, point to start of buffer
if (Atemp <= 30) A=0;
X = A;
// FIXME: Explain this fix better, it's not obvious
// ML : A =, fixes a problem with invalid pitch with '.'
while( (A=pitches[X]) == 127) X++;
pos48398:
//48398: CLC
//48399: ADC 48
// add the inflection direction
A += mem48;
phase1 = A;
// set the inflection
pitches[X] = A;
pos48406:
// increment the position
X++;
// exit if the punctuation has been reached
if (X == mem49) return; //goto pos47615;
if (pitches[X] == 255) goto pos48406;
A = phase1;
goto pos48398;
}
/*
SAM's voice can be altered by changing the frequencies of the
mouth formant (F1) and the throat formant (F2). Only the voiced
phonemes (5-29 and 48-53) are altered.
*/
void SetMouthThroat(unsigned char mouth, unsigned char throat)
{