forked from IntelLabs/distiller
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusage.html
614 lines (492 loc) · 35.5 KB
/
usage.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="shortcut icon" href="img/favicon.ico">
<title>Usage - Neural Network Distiller</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="css/theme.css" type="text/css" />
<link rel="stylesheet" href="css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<link href="extra.css" rel="stylesheet">
<script>
// Current page data
var mkdocs_page_name = "Usage";
var mkdocs_page_input_path = "usage.md";
var mkdocs_page_url = null;
</script>
<script src="js/jquery-2.1.1.min.js" defer></script>
<script src="js/modernizr-2.8.3.min.js" defer></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-nav-search">
<a href="index.html" class="icon icon-home"> Neural Network Distiller</a>
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="./search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1">
<a class="" href="index.html">Home</a>
</li>
<li class="toctree-l1">
<a class="" href="install.html">Installation</a>
</li>
<li class="toctree-l1 current">
<a class="current" href="usage.html">Usage</a>
<ul class="subnav">
<li class="toctree-l2"><a href="#using-the-sample-application">Using the sample application</a></li>
<ul>
<li><a class="toctree-l3" href="#command-line-arguments">Command line arguments</a></li>
<li><a class="toctree-l3" href="#examples">Examples</a></li>
<li><a class="toctree-l3" href="#experiment-reproducibility">Experiment reproducibility</a></li>
<li><a class="toctree-l3" href="#performing-pruning-sensitivity-analysis">Performing pruning sensitivity analysis</a></li>
<li><a class="toctree-l3" href="#post-training-quantization">Post-Training Quantization</a></li>
<li><a class="toctree-l3" href="#summaries">Summaries</a></li>
<li><a class="toctree-l3" href="#using-tensorboard">Using TensorBoard</a></li>
<li><a class="toctree-l3" href="#collecting-activations-statistics">Collecting activations statistics</a></li>
</ul>
<li class="toctree-l2"><a href="#using-the-jupyter-notebooks">Using the Jupyter notebooks</a></li>
<li class="toctree-l2"><a href="#generating-this-documentation">Generating this documentation</a></li>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="schedule.html">Compression Scheduling</a>
</li>
<li class="toctree-l1">
<a class="" href="prepare_model_quant.html">Preparing a Model for Quantization</a>
</li>
<li class="toctree-l1">
<span class="caption-text">Compressing Models</span>
<ul class="subnav">
<li class="">
<a class="" href="pruning.html">Pruning</a>
</li>
<li class="">
<a class="" href="regularization.html">Regularization</a>
</li>
<li class="">
<a class="" href="quantization.html">Quantization</a>
</li>
<li class="">
<a class="" href="knowledge_distillation.html">Knowledge Distillation</a>
</li>
<li class="">
<a class="" href="conditional_computation.html">Conditional Computation</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<span class="caption-text">Algorithms</span>
<ul class="subnav">
<li class="">
<a class="" href="algo_pruning.html">Pruning</a>
</li>
<li class="">
<a class="" href="algo_quantization.html">Quantization</a>
</li>
<li class="">
<a class="" href="algo_earlyexit.html">Early Exit</a>
</li>
</ul>
</li>
<li class="toctree-l1">
<a class="" href="model_zoo.html">Model Zoo</a>
</li>
<li class="toctree-l1">
<a class="" href="jupyter.html">Jupyter Notebooks</a>
</li>
<li class="toctree-l1">
<a class="" href="design.html">Design</a>
</li>
<li class="toctree-l1">
<span class="caption-text">Tutorials</span>
<ul class="subnav">
<li class="">
<a class="" href="tutorial-struct_pruning.html">Pruning Filters and Channels</a>
</li>
<li class="">
<a class="" href="tutorial-lang_model.html">Pruning a Language Model</a>
</li>
<li class="">
<a class="" href="tutorial-lang_model_quant.html">Quantizing a Language Model</a>
</li>
<li class="">
<a class="" href="tutorial-gnmt_quant.html">Quantizing GNMT</a>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">Neural Network Distiller</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html">Docs</a> »</li>
<li>Usage</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h1 id="using-the-sample-application">Using the sample application</h1>
<p>The Distiller repository contains a sample application, <code>distiller/examples/classifier_compression/compress_classifier.py</code>, and a set of scheduling files which demonstrate Distiller's features. Following is a brief discussion of how to use this application and the accompanying schedules.</p>
<p>You might also want to refer to the following resources:</p>
<ul>
<li>An <a href="https://intellabs.github.io/distiller/schedule.html">explanation</a> of the scheduler file format.</li>
<li>An in-depth <a href="https://intellabs.github.io/distiller/model_zoo.html">discussion</a> of how we used these schedule files to implement several state-of-the-art DNN compression research papers.</li>
</ul>
<p>The sample application supports various features for compression of image classification DNNs, and gives an example of how to integrate distiller in your own application. The code is documented and should be considered the best source of documentation, but we provide some elaboration here.</p>
<p>This diagram shows how where <code>compress_classifier.py</code> fits in the compression workflow, and how we integrate the Jupyter notebooks as part of our research work.
<center><img alt="Using Distiller" src="imgs/use-flow.png" /></center><br></p>
<h2 id="command-line-arguments">Command line arguments</h2>
<p>To get help on the command line arguments, invoke:</p>
<pre><code>$ python3 compress_classifier.py --help
</code></pre>
<p>For example:</p>
<pre><code>$ time python3 compress_classifier.py -a alexnet --lr 0.005 -p 50 ../../../data.imagenet -j 44 --epochs 90 --pretrained --compress=../sensitivity-pruning/alexnet.schedule_sensitivity.yaml
Parameters:
+----+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
| | Name | Shape | NNZ (dense) | NNZ (sparse) | Cols (%) | Rows (%) | Ch (%) | 2D (%) | 3D (%) | Fine (%) | Std | Mean | Abs-Mean |
|----+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
| 0 | features.module.0.weight | (64, 3, 11, 11) | 23232 | 13411 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 42.27359 | 0.14391 | -0.00002 | 0.08805 |
| 1 | features.module.3.weight | (192, 64, 5, 5) | 307200 | 115560 | 0.00000 | 0.00000 | 0.00000 | 1.91243 | 0.00000 | 62.38281 | 0.04703 | -0.00250 | 0.02289 |
| 2 | features.module.6.weight | (384, 192, 3, 3) | 663552 | 256565 | 0.00000 | 0.00000 | 0.00000 | 6.18490 | 0.00000 | 61.33445 | 0.03354 | -0.00184 | 0.01803 |
| 3 | features.module.8.weight | (256, 384, 3, 3) | 884736 | 315065 | 0.00000 | 0.00000 | 0.00000 | 6.96411 | 0.00000 | 64.38881 | 0.02646 | -0.00168 | 0.01422 |
| 4 | features.module.10.weight | (256, 256, 3, 3) | 589824 | 186938 | 0.00000 | 0.00000 | 0.00000 | 15.49225 | 0.00000 | 68.30614 | 0.02714 | -0.00246 | 0.01409 |
| 5 | classifier.1.weight | (4096, 9216) | 37748736 | 3398881 | 0.00000 | 0.21973 | 0.00000 | 0.21973 | 0.00000 | 90.99604 | 0.00589 | -0.00020 | 0.00168 |
| 6 | classifier.4.weight | (4096, 4096) | 16777216 | 1782769 | 0.21973 | 3.46680 | 0.00000 | 3.46680 | 0.00000 | 89.37387 | 0.00849 | -0.00066 | 0.00263 |
| 7 | classifier.6.weight | (1000, 4096) | 4096000 | 994738 | 3.36914 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 75.71440 | 0.01718 | 0.00030 | 0.00778 |
| 8 | Total sparsity: | - | 61090496 | 7063928 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 88.43694 | 0.00000 | 0.00000 | 0.00000 |
+----+---------------------------+------------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
2018-04-04 21:30:52,499 - Total sparsity: 88.44
2018-04-04 21:30:52,499 - --- validate (epoch=89)-----------
2018-04-04 21:30:52,499 - 128116 samples (256 per mini-batch)
2018-04-04 21:31:04,646 - Epoch: [89][ 50/ 500] Loss 2.175988 Top1 51.289063 Top5 74.023438
2018-04-04 21:31:06,427 - Epoch: [89][ 100/ 500] Loss 2.171564 Top1 51.175781 Top5 74.308594
2018-04-04 21:31:11,432 - Epoch: [89][ 150/ 500] Loss 2.159347 Top1 51.546875 Top5 74.473958
2018-04-04 21:31:14,364 - Epoch: [89][ 200/ 500] Loss 2.156857 Top1 51.585938 Top5 74.568359
2018-04-04 21:31:18,381 - Epoch: [89][ 250/ 500] Loss 2.152790 Top1 51.707813 Top5 74.681250
2018-04-04 21:31:22,195 - Epoch: [89][ 300/ 500] Loss 2.149962 Top1 51.791667 Top5 74.755208
2018-04-04 21:31:25,508 - Epoch: [89][ 350/ 500] Loss 2.150936 Top1 51.827009 Top5 74.767857
2018-04-04 21:31:29,538 - Epoch: [89][ 400/ 500] Loss 2.150853 Top1 51.781250 Top5 74.763672
2018-04-04 21:31:32,842 - Epoch: [89][ 450/ 500] Loss 2.150156 Top1 51.828125 Top5 74.821181
2018-04-04 21:31:35,338 - Epoch: [89][ 500/ 500] Loss 2.150417 Top1 51.833594 Top5 74.817187
2018-04-04 21:31:35,357 - ==> Top1: 51.838 Top5: 74.817 Loss: 2.150
2018-04-04 21:31:35,364 - Saving checkpoint
2018-04-04 21:31:39,251 - --- test ---------------------
2018-04-04 21:31:39,252 - 50000 samples (256 per mini-batch)
2018-04-04 21:31:51,512 - Test: [ 50/ 195] Loss 1.487607 Top1 63.273438 Top5 85.695312
2018-04-04 21:31:55,015 - Test: [ 100/ 195] Loss 1.638043 Top1 60.636719 Top5 83.664062
2018-04-04 21:31:58,732 - Test: [ 150/ 195] Loss 1.833214 Top1 57.619792 Top5 80.447917
2018-04-04 21:32:01,274 - ==> Top1: 56.606 Top5: 79.446 Loss: 1.893
</code></pre>
<p>Let's look at the command line again:</p>
<pre><code>$ time python3 compress_classifier.py -a alexnet --lr 0.005 -p 50 ../../../data.imagenet -j 44 --epochs 90 --pretrained --compress=../sensitivity-pruning/alexnet.schedule_sensitivity.yaml
</code></pre>
<p>In this example, we prune a TorchVision pre-trained AlexNet network, using the following configuration:</p>
<ul>
<li>Learning-rate of 0.005</li>
<li>Print progress every 50 mini-batches.</li>
<li>Use 44 worker threads to load data (make sure to use something suitable for your machine).</li>
<li>Run for 90 epochs. Torchvision's pre-trained models did not store the epoch metadata, so pruning starts at epoch 0. When you train and prune your own networks, the last training epoch is saved as a metadata with the model. Therefore, when you load such models, the first epoch is not 0, but it is the last training epoch.</li>
<li>The pruning schedule is provided in <code>alexnet.schedule_sensitivity.yaml</code></li>
<li>Log files are written to directory <code>logs</code>.</li>
</ul>
<h2 id="examples">Examples</h2>
<p>Distiller comes with several example schedules which can be used together with <code>compress_classifier.py</code>.
These example schedules (YAML) files, contain the command line that is used in order to invoke the schedule (so that you can easily recreate the results in your environment), together with the results of the pruning or regularization. The results usually contain a table showing the sparsity of each of the model parameters, together with the validation and test top1, top5 and loss scores.</p>
<p>For more details on the example schedules, you can refer to the coverage of the <a href="model_zoo.html">Model Zoo</a>.</p>
<ul>
<li><strong>examples/agp-pruning</strong>:<ul>
<li>Automated Gradual Pruning (AGP) on MobileNet and ResNet18 (ImageNet dataset)
<br><br></li>
</ul>
</li>
<li><strong>examples/hybrid</strong>:<ul>
<li>AlexNet AGP with 2D (kernel) regularization (ImageNet dataset)</li>
<li>AlexNet sensitivity pruning with 2D regularization
<br><br></li>
</ul>
</li>
<li><strong>examples/network_slimming</strong>:<ul>
<li>ResNet20 Network Slimming (this is work-in-progress)
<br><br></li>
</ul>
</li>
<li><strong>examples/pruning_filters_for_efficient_convnets</strong>:<ul>
<li>ResNet56 baseline training (CIFAR10 dataset)</li>
<li>ResNet56 filter removal using filter ranking
<br><br></li>
</ul>
</li>
<li><strong>examples/sensitivity_analysis</strong>:<ul>
<li>Element-wise pruning sensitivity-analysis:</li>
<li>AlexNet (ImageNet)</li>
<li>MobileNet (ImageNet)</li>
<li>ResNet18 (ImageNet)</li>
<li>ResNet20 (CIFAR10)</li>
<li>ResNet34 (ImageNet)</li>
<li>Filter-wise pruning sensitivity-analysis:</li>
<li>ResNet20 (CIFAR10)</li>
<li>ResNet56 (CIFAR10)
<br><br></li>
</ul>
</li>
<li><strong>examples/sensitivity-pruning</strong>:<ul>
<li>AlexNet sensitivity pruning with Iterative Pruning</li>
<li>AlexNet sensitivity pruning with One-Shot Pruning
<br><br></li>
</ul>
</li>
<li><strong>examples/ssl</strong>:<ul>
<li>ResNet20 baseline training (CIFAR10 dataset)</li>
<li>Structured Sparsity Learning (SSL) with layer removal on ResNet20</li>
<li>SSL with channels removal on ResNet20
<br><br></li>
</ul>
</li>
<li><strong>examples/quantization</strong>:<ul>
<li>AlexNet w. Batch-Norm (base FP32 + DoReFa)</li>
<li>Pre-activation ResNet20 on CIFAR10 (base FP32 + DoReFa)</li>
<li>Pre-activation ResNet18 on ImageNEt (base FP32 + DoReFa)</li>
</ul>
</li>
</ul>
<h2 id="experiment-reproducibility">Experiment reproducibility</h2>
<p>Experiment reproducibility is sometimes important. Pete Warden recently expounded about this in his <a href="https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/">blog</a>.<br />
PyTorch's support for deterministic execution requires us to use only one thread for loading data (other wise the multi-threaded execution of the data loaders can create random order and change the results), and to set the seed of the CPU and GPU PRNGs. Using the <code>--deterministic</code> command-line flag and setting <code>j=1</code> will produce reproducible results (for the same PyTorch version).</p>
<h2 id="performing-pruning-sensitivity-analysis">Performing pruning sensitivity analysis</h2>
<p>Distiller supports element-wise and filter-wise pruning sensitivity analysis. In both cases, L1-norm is used to rank which elements or filters to prune. For example, when running filter-pruning sensitivity analysis, the L1-norm of the filters of each layer's weights tensor are calculated, and the bottom x% are set to zero. <br>
The analysis process is quite long, because currently we use the entire test dataset to assess the accuracy performance at each pruning level of each weights tensor. Using a small dataset for this would save much time and we plan on assessing if this will provide sufficient results.<br>
Results are output as a CSV file (<code>sensitivity.csv</code>) and PNG file (<code>sensitivity.png</code>). The implementation is in <code>distiller/sensitivity.py</code> and it contains further details about process and the format of the CSV file.</p>
<p>The example below performs element-wise pruning sensitivity analysis on ResNet20 for CIFAR10:</p>
<pre><code>$ python3 compress_classifier.py -a resnet20_cifar ../../../data.cifar10/ -j=1 --resume=../cifar10/resnet20/checkpoint_trained_dense.pth.tar --sense=element
</code></pre>
<p>The <code>sense</code> command-line argument can be set to either <code>element</code> or <code>filter</code>, depending on the type of analysis you want done.<br></p>
<p>There is also a <a href="https://github.com/IntelLabs/distiller/blob/master/jupyter/sensitivity_analysis.ipynb">Jupyter notebook</a> with example invocations, outputs and explanations.</p>
<h2 id="post-training-quantization">Post-Training Quantization</h2>
<p>The following example qunatizes ResNet18 for ImageNet:</p>
<pre><code class="bash">$ python3 compress_classifier.py -a resnet18 ../../../data.imagenet --pretrained --quantize-eval --evaluate
</code></pre>
<p>See <a href="schedule.html#post-training-quantization">here</a> for more details on how to invoke post-training quantization from the command line.</p>
<p>A checkpoint with the quantized model will be dumped in the run directory. It will contain the quantized model parameters (the data type will still be FP32, but the values will be integers). The calculated quantization parameters (scale and zero-point) are stored as well in each quantized layer.</p>
<p>For more examples of post-training quantization see <a href="https://github.com/IntelLabs/distiller/blob/master/examples/quantization/post_train_quant">here</a>.</p>
<h2 id="summaries">Summaries</h2>
<p>You can use the sample compression application to generate model summary reports, such as the attributes and compute summary report (see screen capture below).
You can log sparsity statistics (written to console and CSV file), performance, optimizer and model information, and also create a PNG image of the DNN.
Creating a PNG image is an experimental feature (it relies on features which are not available on PyTorch 3.1 and that we hope will be available in PyTorch's next release), so to use it you will need to compile the PyTorch master branch, and hope for the best ;-).</p>
<pre><code>$ python3 compress_classifier.py --resume=../ssl/checkpoints/checkpoint_trained_ch_regularized_dense.pth.tar -a=resnet20_cifar ../../../data.cifar10 --summary=compute
</code></pre>
<p>Generates:</p>
<pre><code>+----+------------------------------+--------+----------+-----------------+--------------+-----------------+--------------+------------------+---------+
| | Name | Type | Attrs | IFM | IFM volume | OFM | OFM volume | Weights volume | MACs |
|----+------------------------------+--------+----------+-----------------+--------------+-----------------+--------------+------------------+---------|
| 0 | module.conv1 | Conv2d | k=(3, 3) | (1, 3, 32, 32) | 3072 | (1, 16, 32, 32) | 16384 | 432 | 442368 |
| 1 | module.layer1.0.conv1 | Conv2d | k=(3, 3) | (1, 16, 32, 32) | 16384 | (1, 16, 32, 32) | 16384 | 2304 | 2359296 |
| 2 | module.layer1.0.conv2 | Conv2d | k=(3, 3) | (1, 16, 32, 32) | 16384 | (1, 16, 32, 32) | 16384 | 2304 | 2359296 |
| 3 | module.layer1.1.conv1 | Conv2d | k=(3, 3) | (1, 16, 32, 32) | 16384 | (1, 16, 32, 32) | 16384 | 2304 | 2359296 |
| 4 | module.layer1.1.conv2 | Conv2d | k=(3, 3) | (1, 16, 32, 32) | 16384 | (1, 16, 32, 32) | 16384 | 2304 | 2359296 |
| 5 | module.layer1.2.conv1 | Conv2d | k=(3, 3) | (1, 16, 32, 32) | 16384 | (1, 16, 32, 32) | 16384 | 2304 | 2359296 |
| 6 | module.layer1.2.conv2 | Conv2d | k=(3, 3) | (1, 16, 32, 32) | 16384 | (1, 16, 32, 32) | 16384 | 2304 | 2359296 |
| 7 | module.layer2.0.conv1 | Conv2d | k=(3, 3) | (1, 16, 32, 32) | 16384 | (1, 32, 16, 16) | 8192 | 4608 | 1179648 |
| 8 | module.layer2.0.conv2 | Conv2d | k=(3, 3) | (1, 32, 16, 16) | 8192 | (1, 32, 16, 16) | 8192 | 9216 | 2359296 |
| 9 | module.layer2.0.downsample.0 | Conv2d | k=(1, 1) | (1, 16, 32, 32) | 16384 | (1, 32, 16, 16) | 8192 | 512 | 131072 |
| 10 | module.layer2.1.conv1 | Conv2d | k=(3, 3) | (1, 32, 16, 16) | 8192 | (1, 32, 16, 16) | 8192 | 9216 | 2359296 |
| 11 | module.layer2.1.conv2 | Conv2d | k=(3, 3) | (1, 32, 16, 16) | 8192 | (1, 32, 16, 16) | 8192 | 9216 | 2359296 |
| 12 | module.layer2.2.conv1 | Conv2d | k=(3, 3) | (1, 32, 16, 16) | 8192 | (1, 32, 16, 16) | 8192 | 9216 | 2359296 |
| 13 | module.layer2.2.conv2 | Conv2d | k=(3, 3) | (1, 32, 16, 16) | 8192 | (1, 32, 16, 16) | 8192 | 9216 | 2359296 |
| 14 | module.layer3.0.conv1 | Conv2d | k=(3, 3) | (1, 32, 16, 16) | 8192 | (1, 64, 8, 8) | 4096 | 18432 | 1179648 |
| 15 | module.layer3.0.conv2 | Conv2d | k=(3, 3) | (1, 64, 8, 8) | 4096 | (1, 64, 8, 8) | 4096 | 36864 | 2359296 |
| 16 | module.layer3.0.downsample.0 | Conv2d | k=(1, 1) | (1, 32, 16, 16) | 8192 | (1, 64, 8, 8) | 4096 | 2048 | 131072 |
| 17 | module.layer3.1.conv1 | Conv2d | k=(3, 3) | (1, 64, 8, 8) | 4096 | (1, 64, 8, 8) | 4096 | 36864 | 2359296 |
| 18 | module.layer3.1.conv2 | Conv2d | k=(3, 3) | (1, 64, 8, 8) | 4096 | (1, 64, 8, 8) | 4096 | 36864 | 2359296 |
| 19 | module.layer3.2.conv1 | Conv2d | k=(3, 3) | (1, 64, 8, 8) | 4096 | (1, 64, 8, 8) | 4096 | 36864 | 2359296 |
| 20 | module.layer3.2.conv2 | Conv2d | k=(3, 3) | (1, 64, 8, 8) | 4096 | (1, 64, 8, 8) | 4096 | 36864 | 2359296 |
| 21 | module.fc | Linear | | (1, 64) | 64 | (1, 10) | 10 | 640 | 640 |
+----+------------------------------+--------+----------+-----------------+--------------+-----------------+--------------+------------------+---------+
Total MACs: 40,813,184
</code></pre>
<h2 id="using-tensorboard">Using TensorBoard</h2>
<p>Google's <a href="https://github.com/tensorflow/tensorboard">TensorBoard</a> is an excellent tool for visualizing the progress of DNN training. Distiller's logger supports writing performance indicators and parameter statistics in a file format that can be read by TensorBoard (Distiller uses TensorFlow's APIs in order to do this, which is why Distiller requires the installation of TensorFlow).<br>
To view the graphs, invoke the TensorBoard server. For example:</p>
<pre><code>$ tensorboard --logdir=logs
</code></pre>
<p>Distillers's setup (requirements.txt) installs TensorFlow for CPU. If you want a different installation, please follow the <a href="https://www.tensorflow.org/install/install_linux">TensorFlow installation instructions</a>.</p>
<h2 id="collecting-activations-statistics">Collecting activations statistics</h2>
<p>In CNNs with ReLU layers, ReLU activations (feature-maps) also exhibit a nice level of sparsity (50-60% sparsity is typical). <br>
You can collect activation statistics using the <code>--act_stats</code> command-line flag.<br>
For example:</p>
<pre><code>$ python3 compress_classifier.py -a=resnet56_cifar -p=50 ../../../data.cifar10 --resume=checkpoint.resnet56_cifar_baseline.pth.tar --act-stats=test -e
</code></pre>
<p>The <code>test</code> parameter indicates that, in this example, we want to collect activation statistics during the <em>test</em> phase. Note that we also used the <code>-e</code> command-line argument to indicate that we want to run a <em>test</em> phase. The other two legal parameter values are <code>train</code> and <code>valid</code> which collect activation statistics during the <em>training</em> and <em>validation</em> phases, respectively. </p>
<h3 id="collectors-and-their-collaterals">Collectors and their collaterals</h3>
<p>An instance of a subclass of <code>ActivationStatsCollector</code> can be used to collect activation statistics. Currently, <code>ActivationStatsCollector</code> has two types of subclasses: <code>SummaryActivationStatsCollector</code> and <code>RecordsActivationStatsCollector</code>.<br>
Instances of <code>SummaryActivationStatsCollector</code> compute the mean of some statistic of the activation. It is rather
light-weight and quicker than collecting a record per activation. The statistic function is configured in the constructor.<br>
In the sample compression application, <code>compress_classifier.py</code>, we create a dictionary of collectors. For example:</p>
<pre><code>SummaryActivationStatsCollector(model,
"sparsity",
lambda t: 100 * distiller.utils.sparsity(t))
</code></pre>
<p>The lambda expression is invoked per activation encountered during forward passes, and the value it returns (in this case, the sparsity of the activation tensors, multiplied by 100) is stored in <code>module.sparsity</code> (<em>"sparsity"</em> is this collector's name). To access the statistics, you can invoke <code>collector.value()</code>, or you can access each module's data directly.</p>
<p>Another type of collector is <code>RecordsActivationStatsCollector</code> which computes a hard-coded set of activations statistics and collects a
<em>record per activation</em>. For obvious reasons, this is slower than instances of <code>SummaryActivationStatsCollector</code>.<br><code>ActivationStatsCollector</code> default to collecting activations statistics only on the output activations of ReLU layers, but we can choose any layer type we want. In the example below we collect statistics from outputs of <code>torch.nn.Conv2d</code> layers.</p>
<pre><code>RecordsActivationStatsCollector(model, classes=[torch.nn.Conv2d])
</code></pre>
<p>Collectors can write their data to Excel workbooks (which are named using the collector's name), by invoking <code>collector.to_xlsx(path_to_workbook)</code>. In <code>compress_classifier.py</code> we currently create four different collectors which you can selectively disable. You can also add other statistics collectors and use a different function to compute your new statistic.</p>
<pre><code>collectors = missingdict({
"sparsity": SummaryActivationStatsCollector(model, "sparsity",
lambda t: 100 * distiller.utils.sparsity(t)),
"l1_channels": SummaryActivationStatsCollector(model, "l1_channels",
distiller.utils.activation_channels_l1),
"apoz_channels": SummaryActivationStatsCollector(model, "apoz_channels",
distiller.utils.activation_channels_apoz),
"records": RecordsActivationStatsCollector(model, classes=[torch.nn.Conv2d])})
</code></pre>
<p>By default, these Collectors write their data to files in the active log directory.</p>
<p>You can use a utility function, <code>distiller.log_activation_statsitics</code>, to log the data of an <code>ActivationStatsCollector</code> instance to one of the backend-loggers. For an example, the code below logs the <em>"sparsity"</em> collector to a TensorBoard log file.</p>
<pre><code>distiller.log_activation_statsitics(epoch, "train", loggers=[tflogger],
collector=collectors["sparsity"])
</code></pre>
<h3 id="caveats">Caveats</h3>
<p>Distiller collects activations statistics using PyTorch's forward-hooks mechanism. Collectors iteratively register the modules' forward-hooks, and collectors are called during the forward traversal and get exposed to activation data. Registering for forward callbacks is performed like this:</p>
<pre><code>module.register_forward_hook
</code></pre>
<p>This makes apparent two limitations of this mechanism:</p>
<ol>
<li>We can only register on PyTorch modules. This means that we can't register on the forward hook of a functionals such as <code>torch.nn.functional.relu</code> and <code>torch.nn.functional.max_pool2d</code>.<br />
Therefore, you may need to replace functionals with their module alternative. For example: </li>
</ol>
<pre><code>class MadeUpNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return x
</code></pre>
<p>Can be changed to: </p>
<pre><code>class MadeUpNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.relu(self.conv1(x))
return x
</code></pre>
<ol>
<li>We can only use a module instance once in our models. If we use the same module several times, then we can't determine which node in the graph has invoked the callback, because the PyTorch callback signature <code>def hook(module, input, output)</code> doesn't provide enough contextual information.<br />
TorchVision's <a href="https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py">ResNet</a> is an example of a model that uses the same instance of nn.ReLU multiple times: </li>
</ol>
<pre><code>class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out) # <================
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out) # <================
return out
</code></pre>
<p>In Distiller we changed <a href="https://github.com/IntelLabs/distiller/blob/master/distiller/models/imagenet/resnet.py">ResNet</a> to use multiple instances of nn.ReLU, and each instance is used only once: </p>
<pre><code>class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out) # <================
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu2(out) # <================
return out
</code></pre>
<h1 id="using-the-jupyter-notebooks">Using the Jupyter notebooks</h1>
<p>The Jupyter notebooks contain many examples of how to use the statistics summaries generated by Distiller. They are explained in a separate page.</p>
<h1 id="generating-this-documentation">Generating this documentation</h1>
<p>Install mkdocs and the required packages by executing:</p>
<pre><code>$ pip3 install -r doc-requirements.txt
</code></pre>
<p>To build the project documentation run:</p>
<pre><code>$ cd distiller/docs-src
$ mkdocs build --clean
</code></pre>
<p>This will create a folder named 'site' which contains the documentation website.
Open distiller/docs/site/index.html to view the documentation home page.</p>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="schedule.html" class="btn btn-neutral float-right" title="Compression Scheduling">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="install.html" class="btn btn-neutral" title="Installation"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" style="cursor: pointer">
<span class="rst-current-version" data-toggle="rst-current-version">
<span><a href="install.html" style="color: #fcfcfc;">« Previous</a></span>
<span style="margin-left: 15px"><a href="schedule.html" style="color: #fcfcfc">Next »</a></span>
</span>
</div>
<script>var base_url = '.';</script>
<script src="js/theme.js" defer></script>
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML" defer></script>
<script src="search/main.js" defer></script>
</body>
</html>