给定一个二维网格和一个单词,找出该单词是否存在于网格中。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例:
board =
[
['A','B','C','E'],
['S','F','C','S'],
['A','D','E','E']
]
给定 word = "ABCCED", 返回 true
给定 word = "SEE", 返回 true
给定 word = "ABCB", 返回 false
解题思路(有点暴力搜索的感觉):dfs(深度优先搜索)和回溯算法,找到首字母进入递归开始四个方向搜索与回溯算法搭配使用,记录走过的位置,回溯释放走过的位置,直到检索到所有字母或将所有表格字母检索完!
class Solution:
direction = [(0, -1), (-1, 0), (0, 1), (1, 0)]
def exist(self, board, word):
m = len(board)
if(m == 0):
return False
n = len(board[0])
marked = [[0 for _ in range(n)] for _ in range(m)]
for i in range(m):
for j in range(n):
# 对每一个格子都需要从头搜索
if self.__search_word(board, word, 0, i, j, m, n, marked):
return True
return False
def __search_word(self, board, word, index, i, j, m, n, marked):
# 递归终止条件
if index == len(word) - 1:
return board[i][j] == word[index]
if board[i][j] == word[index]:
# 标记已经走过的格子,如果搜索不成功需要释放掉
marked[i][j] = 1
for direction in self.direction:
new_x = i + direction[0]
new_y = j + direction[1]
if 0 <= new_x < m and 0 <= new_y < n and not marked[new_x][new_y] and self.__search_word(board, word, index + 1, new_x, new_y, m, n, marked):
return True
# 回溯,表示搜索哦不成功,释放位置
marked[i][j] = 0
return False
class Solution {
public:
// 四个遍历方像的值
int director[4][2] = { {0, -1}, {-1, 0}, {0, 1}, {1, 0} };
bool exist(vector<vector<char>>& board, string word) {
int m = board.size();
if (m == 0) return false;
int n = board[0].size();
vector<vector<int>> marked(m, vector<int>(n));
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (dfs(board, word, 0, i, j, m, n, marked)) return true;
}
}
return false;
}
bool dfs(vector<vector<char>>& board, string word, int index, int i, int j, int m, int n, vector<vector<int>>& marked)
{
// 递归结束条件
if (index == word.size() - 1) return board[i][j] == word[index];
if (board[i][j] == word[index])
{
// 记录走过的位置
marked[i][j] = 1;
for (int k = 0; k < 4; ++k)
{
int new_x = i + director[k][0];
int new_y = j + director[k][1];
if ((new_x >= 0 && new_x < m) && (new_y >= 0 && new_y < n) && (!marked[new_x][new_y]) &&
dfs(board, word, index + 1, new_x, new_y, m, n, marked))
return true;
}
// 回溯 释放走过的位置
marked[i][j] = 0;
}
return false;
}
};