Skip to content

Files

Latest commit

54844ee · Jan 9, 2022

History

History
This branch is 1186 commits behind labmlai/labml:master.

app

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jul 23, 2021
Jan 9, 2022
Aug 27, 2021
Jul 22, 2021
Dec 19, 2021
Aug 6, 2021

Mobile first web app to monitor PyTorch & TensorFlow model training

Relax while your models are training instead of sitting in front of a computer

PyPI - Python Version PyPI Status Docs Twitter

This is an open-source library to push updates of your ML/DL model training to mobile. Here's a sample experiment

You can host this on your own. We also have a small AWS instance running. and you are welcome to use it. Please consider using your own installation if you are running lots of experiments.

Notable Features

  • Mobile first design: web version, that gives you a great mobile experience on a mobile browser.
  • Model Gradients, Activations and Parameters: Track and compare these indicators independently. We provide a separate analysis for each of the indicator types.
  • Summary and Detail Views: Summary views would help you to quickly scan and understand your model progress. You can use detail views for more in-depth analysis.
  • Track only what you need: You can pick and save the indicators that you want to track in the detail view. This would give you a customised summary view where you can focus on specific model indicators.
  • Standard ouptut: Check the terminal output from your mobile. No need to SSH.

How to run app locally?

Install the PIP package

pip install labml-app

Start the server

labml app-server

Set the web api url to http://localhost:5000/api/v1/track? when you run experiments. You can also set this on .labml.yaml.

from labml import tracker, experiment

with experiment.record(name='sample', token='http://localhost:5000/api/v1/track?'):
    for i in range(50):
        loss, accuracy = train()
        tracker.save(i, {'loss': loss, 'accuracy': accuracy})