forked from mrirecon/bart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrmfreq.c
205 lines (139 loc) · 5.7 KB
/
rmfreq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* Copyright 2020. Uecker Lab. University Medical Center Göttingen.
* All rights reserved. Use of this source code is governed by
* a BSD-style license which can be found in the LICENSE file.
*
* Authors:
* 2018-2020 Sebastian Rosenzweig
*
* Sebastian Rosenzweig, Nick Scholand, H. Christian M. Holme, Martin Uecker.
* Cardiac and Respiratory Self-Gating in Radial MRI using an Adapted Singular
* Spectrum Analysis (SSA-FARY), IEEE Trans. Magn. Imag. (2020), in press.
*/
#include <stdbool.h>
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include "num/multind.h"
#include "num/init.h"
#include "num/flpmath.h"
#include "num/linalg.h"
#include "misc/mmio.h"
#include "misc/misc.h"
#include "misc/mri.h"
#include "misc/opts.h"
#include "misc/debug.h"
static const char usage_str[] = "<traj> <k> <k_cor>";
static const char help_str[] = "Remove angle-dependent frequency\n";
int main_rmfreq(int argc, char* argv[argc])
{
unsigned int n_harmonics = 5;
const struct opt_s opts[] = {
OPT_UINT('N', &n_harmonics, "#", "Number of harmonics [Default: 5]"),
};
cmdline(&argc, argv, 3, 3, usage_str, help_str, ARRAY_SIZE(opts), opts);
num_init();
enum { LAST_DIM = DIMS - 1 };
// Read k-space
long k_dims[DIMS];
complex float* k = load_cfl(argv[2], DIMS, k_dims);
if (md_check_dimensions(DIMS, k_dims, COIL_FLAG|TIME_FLAG|SLICE_FLAG))
error("Only COIL_DIM, TIME_DIM and SLICE_DIM may have entries!\n");
// Read trajectory
long t_dims[DIMS];
complex float* t = load_cfl(argv[1], DIMS, t_dims);
if (!md_check_equal_dims(DIMS, t_dims, k_dims, ~(READ_FLAG|PHS1_FLAG|COIL_FLAG)))
error("k-space and trajectory inconsistent!\n");
// Calculate angles from trajectory
long angles_dims[DIMS];
md_select_dims(DIMS, ~(PHS1_FLAG|COIL_FLAG), angles_dims, k_dims);
complex float* angles = md_alloc(DIMS, angles_dims, CFL_SIZE);
long t1_dims[DIMS];
md_select_dims(DIMS, ~MD_BIT(1), t1_dims, t_dims);
complex float* t1 = md_alloc(DIMS, t1_dims, CFL_SIZE);
md_slice(DIMS, MD_BIT(1), (long[DIMS]){ 0 }, t_dims, t1, t, CFL_SIZE);
int N = 1;
for (unsigned int i = 0; i < DIMS; i++)
N = N * angles_dims[i];
for (int i = 0; i < N; i++) {
angles[i] = M_PI + atan2f(crealf(t1[3 * i + 0]), crealf(t1[3 * i + 1]));
//debug_printf(DP_INFO, "i: %d, angle: %f\n", i, creal(angles[i]) * 360. / 2. / M_PI);
}
// negative angles
complex float* neg_angles = md_alloc(DIMS, angles_dims, CFL_SIZE);
md_zsmul(DIMS, angles_dims, neg_angles, angles, -1.);
// Projection matrix
long n_dims[DIMS];
md_select_dims(DIMS, ~COIL_FLAG, n_dims, k_dims);
n_dims[LAST_DIM] = 2 * n_harmonics;
complex float* n = md_alloc(DIMS, n_dims, CFL_SIZE);
complex float* n_singleton = md_alloc(DIMS, angles_dims, CFL_SIZE);
complex float* angles1 = md_alloc(DIMS, angles_dims, CFL_SIZE);
long pos[DIMS] = { 0 };
int count = 0;
for (unsigned int h = 0; h < n_harmonics; h++) {
// exp(i * theta * (h+1))
md_zsmul(DIMS, angles_dims, angles1, angles, (h + 1));
md_zexpj(DIMS, angles_dims, n_singleton, angles1);
pos[LAST_DIM] = count;
md_copy_block(DIMS, pos, n_dims, n, angles_dims, n_singleton, CFL_SIZE);
count++;
// exp(- i * theta * (h+1))
md_zsmul(DIMS, angles_dims, angles1, neg_angles, (h + 1));
md_zexpj(DIMS, angles_dims, n_singleton, angles1);
pos[LAST_DIM] = count;
md_copy_block(DIMS, pos, n_dims, n, angles_dims, n_singleton, CFL_SIZE);
count++;
}
// Projection
long k_singleton_dims[DIMS];
md_select_dims(DIMS, TIME_FLAG, k_singleton_dims, k_dims);
complex float* k_singleton = md_alloc(DIMS, k_singleton_dims, CFL_SIZE);
long n_part_singleton_dims[DIMS];
md_select_dims(DIMS, ~SLICE_FLAG, n_part_singleton_dims, n_dims);
complex float* n_part_singleton = md_alloc(DIMS, n_part_singleton_dims, CFL_SIZE);
long pinv_dims[DIMS];
md_transpose_dims(DIMS, TIME_DIM, LAST_DIM, pinv_dims, n_part_singleton_dims);
complex float* pinv = md_alloc(DIMS, pinv_dims, CFL_SIZE);
long proj_dims[DIMS];
for (unsigned int i = 0; i < DIMS; i++)
proj_dims[i] = 1;
proj_dims[0] = 2 * n_harmonics;
complex float* proj = md_alloc(DIMS, proj_dims, CFL_SIZE);
complex float* proj_singleton = md_alloc(DIMS, k_singleton_dims, CFL_SIZE);
complex float* k_cor_singleton = md_alloc(DIMS, k_singleton_dims, CFL_SIZE);
complex float* k_cor = create_cfl(argv[3], DIMS, k_dims);
long pos1[DIMS] = { 0 };
// Coil-by-coil, Partition-by-Partition correction
for (int c = 0; c < k_dims[COIL_DIM]; c++) {
for (int p = 0; p < k_dims[SLICE_DIM]; p++) {
pos1[SLICE_DIM] = p;
pos1[COIL_DIM] = 0;
md_copy_block(DIMS, pos1, n_part_singleton_dims, n_part_singleton, n_dims, n, CFL_SIZE);
pos1[COIL_DIM] = c;
md_copy_block(DIMS, pos1, k_singleton_dims, k_singleton, k_dims, k, CFL_SIZE);
// pinv(n)
mat_pinv_right(2 * n_harmonics, k_dims[TIME_DIM], (complex float (*)[k_dims[TIME_DIM]])pinv, (complex float (*)[2 * n_harmonics])n_part_singleton);
// k * pinv(n)
mat_mul(1, k_dims[TIME_DIM], 2 * n_harmonics, (complex float (*)[1])proj, (complex float (*)[1])k_singleton, (complex float (*)[k_dims[TIME_DIM]])pinv);
// (k * pinv(n)) * n
mat_mul(1, 2 * n_harmonics, k_dims[TIME_DIM], (complex float (*)[1])proj_singleton, (complex float (*)[1])proj, (complex float (*)[2 * n_harmonics])n_part_singleton);
// k - (k * pinv(n)) * n
md_zsub(DIMS, k_singleton_dims, k_cor_singleton, k_singleton, proj_singleton);
md_copy_block(DIMS, pos1, k_dims, k_cor, k_singleton_dims, k_cor_singleton, CFL_SIZE);
}
}
md_free(angles);
md_free(angles1);
md_free(neg_angles);
md_free(n_singleton);
md_free(n_part_singleton);
md_free(n);
md_free(proj);
md_free(proj_singleton);
md_free(pinv);
md_free(k_cor_singleton);
md_free(k_singleton);
unmap_cfl(DIMS, k_dims, k);
unmap_cfl(DIMS, k_dims, k_cor);
exit(0);
}