|
1 | 1 |
|
| 2 | +# Sklearn 学习目录 |
| 3 | +<img src='https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano%20cover%20page.jpg?raw=true' height=200> |
| 4 | + |
| 5 | +Theano 算得上是 Tensorflow 的前身, 也是一种非常优秀的神经网络模块. 他可以实现各种各样的神经网络模式. 而且用起来也很自由. 兼容Windows, MacOS, Linux. |
| 6 | + |
| 7 | +* 这套教材主要包含了: |
| 8 | + * 了解 的使用规范和原则; |
| 9 | + * 知道怎么去找合适的机器学习方法; |
| 10 | + * 如何按照规范调整个个参数; |
| 11 | + * 运用它强大的数据库; |
| 12 | + * 机器学习的一些重要原则; |
| 13 | + |
| 14 | + |
| 15 | +--- |
| 16 | +## *点击标题进入Youtube视频教程* |
| 17 | + |
| 18 | +1. [**Why?**](https://www.youtube.com/watch?v=84yGQZE43OU&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=2) |
| 19 | + * 介绍 Theano. |
| 20 | + * 在这之前, [<什么是机器学习>](https://www.youtube.com/watch?v=YY7-VKXybjc&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin&index=1), [<什么是神经网络>](https://www.youtube.com/watch?v=RSRkp8VAavQ&index=2&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin)这两段简短的视频介绍都是很推荐的. 优酷的这两段视频在这: [<什么是机器学习>](http://v.youku.com/v_show/id_XMTYyMjk2NDIwOA==.html?f=27892935&o=1), [<什么是神经网络>](http://v.youku.com/v_show/id_XMTU5NDc3MDQwOA==.html?f=27892935&o=1). |
| 21 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY1OTQ4NDI2OA==.html?f=27743371&o=1) |
| 22 | + |
| 23 | + |
| 24 | +2. [**安装**](https://www.youtube.com/watch?v=uefJFOaypj8&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=3) |
| 25 | + * 介绍如何安装. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano2_install.py)) |
| 26 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY1OTUyNjIzNg==.html?f=27743371&o=1) |
| 27 | + |
| 28 | + |
| 29 | +3. [**神经网络在什么**](https://www.youtube.com/watch?v=sPu4KpzLaDQ&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=4) |
| 30 | + * 用动画的形式可视化学习的过程. 这个例子我们会在之后的[回归例子](https://www.youtube.com/watch?v=EULCWeavwPU&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=10)中详细讲解. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano3_what_does_ML_do.py)) |
| 31 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2MTU4MzM4MA==.html?f=27743371&o=1) |
| 32 | + |
| 33 | + |
| 34 | +4. [**基本用法**](https://www.youtube.com/watch?v=je2oHCX5m74&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=5) |
| 35 | + * Theano 的基本使用. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano4_basic_usage.py)) |
| 36 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2MTY1NDY1Ng==.html?f=27743371&o=1) |
| 37 | + |
| 38 | + |
| 39 | +5. [**function 用法**](https://www.youtube.com/watch?v=je2oHCX5m74&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=6) |
| 40 | + * function 的基本用法. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano5_function.py)) |
| 41 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2MjY5NTI5Ng==.html?f=27743371&o=1) |
| 42 | + |
| 43 | + |
| 44 | +6. [**shared 变量**](https://www.youtube.com/watch?v=2exmT0L-QV0&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=7) |
| 45 | + * 用 shared 来控制 weights, biases 的参数变量. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano6_shared_variable.py)) |
| 46 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2Mjc3NTU4NA==.html?f=27743371&o=1) |
| 47 | + |
| 48 | + |
| 49 | +7. [**Activation function 激励函数**](https://www.youtube.com/watch?v=GbYWEOjjsAI&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=8) |
| 50 | + * 参考<机器学习-简介系列>的[激励函数4分钟介绍](). 优酷的[激励函数4分钟介绍在这里](). ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano7_activation_function.py)) |
| 51 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2MzkxNDE1Ng==.html?f=27743371&o=1) |
| 52 | + |
| 53 | + |
| 54 | +8. [**定义 Layer 类**](https://www.youtube.com/watch?v=Xm2InCJqFY4&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=9) |
| 55 | + * 定义Layer这个class, 便于之后添加神经层. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano8_Layer_class.py)) |
| 56 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2Mzk3MDI2MA==.html?f=27743371&o=1) |
| 57 | + |
| 58 | + |
| 59 | +9. [**Regression 回归例子**](https://www.youtube.com/watch?v=lWvlKqvvXyw&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=10) |
| 60 | + * 一个简单的线性回归例子. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/theanoTUT/theano9_regression_nn)) |
| 61 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2NDE2MjA5Ng==.html?f=27743371&o=1) |
| 62 | + |
| 63 | + |
| 64 | +10. [**可视化回归例子**](https://www.youtube.com/watch?v=EULCWeavwPU&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=11) |
| 65 | + * 我们可视化这个神经网络的学习过程. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/theanoTUT/theano10_regression_visualization)) |
| 66 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2NDE5MDY2NA==.html?f=27743371&o=1) |
| 67 | + |
| 68 | + |
| 69 | +11. [**Classification 分类例子**](https://www.youtube.com/watch?v=nslbfsN8wiU&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=12) |
| 70 | + * 一个简单的分类例子. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/theanoTUT/theano11_classification_nn)) |
| 71 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2NDI3ODc2NA==.html?f=27743371&o=1) |
| 72 | + |
| 73 | + |
| 74 | +12. [**Regularization 正规化**](https://www.youtube.com/watch?v=ho4ms9gVjKE&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=11) |
| 75 | + * 请参考<机器学习-简介系列>的[正规化简介](https://www.youtube.com/watch?v=e9OKufD6lRM&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin&index=10)>的4分钟介绍. (优酷的[正规化简介](http://v.youku.com/v_show/id_XMTczNjA2Nzc5Ng==.html?f=27892935&o=1)). ([代码](https://github.com/MorvanZhou/tutorials/tree/master/theanoTUT/theano12_regularization)) |
| 76 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2NTAwNTk0MA==.html?f=27743371&o=1) |
| 77 | + |
| 78 | + |
| 79 | +13. [**保存 model**](https://www.youtube.com/watch?v=sj9BGXGyLho&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=14) |
| 80 | + * 学习好了 model, 我们也要保存学好的参数. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/theanoTUT/theano13_save)) |
| 81 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2NTAyNTM0MA==.html?f=27743371&o=1) |
| 82 | + |
| 83 | + |
| 84 | +14. [**总结和更多**](https://www.youtube.com/watch?v=2VzuMu589MQ&list=PLXO45tsB95cKpDID642AjNkygrSR5X15T&index=15) |
| 85 | + * 总结之前的东西和之后可以继续学习的东西. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/theanoTUT/theano14_summary.py)) |
| 86 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY2NTA0ODA5Mg==.html?f=27743371&o=1) |
0 commit comments