The code for the implementation of “Yolov5 + Circular Smooth Label”.
The results on DOTAv1.5_subsize1024_gap200_rate1.0 test-dev set are shown in the table below. (password:yolo)
Model (link) |
Size (pixels) |
TTA (multi-scale/ rotate testing) |
OBB mAPtest 0.5 DOTAv1.5 |
Speed CPU b1 (ms) |
Speed 2080Ti b1 (ms) |
Speed 2080Ti b16 (ms) |
params (M) |
FLOPs @1024 (B) |
---|---|---|---|---|---|---|---|---|
yolov5m [baidu/google] | 1024 | × | 73.19 | 328.2 | - | - | 21.6 | 50.5 |
yolov5m6 | 1024 | × | - | - | - | - | - | - |
yolov5m7 | 1024 | × | - | - | - | - | - | - |
Table Notes (click to expand)
- All checkpoints are trained to 300 epochs with COCO pre-trained checkpoints, default settings and hyperparameters.
- mAPtest values are for single-model single-scale on DOTAv1.5 dataset.
Reproduce bypython val.py --data 'data/dotav15_poly.yaml' --img 1024 --conf 0.01 --iou 0.4 --task 'test' --batch 16
- Speed averaged over DOTAv1.5 val_split_subsize1024_gap200 images using a 2080Ti gpu. NMS + pre-process times is included.
Reproduce bypython val.py --data 'data/dotav15_poly.yaml' --img 1024 --task speed --batch 1
- [2022/1/7] : Faster and stronger, some bugs fixed
Please refer to install.md for installation and dataset preparation.
This repo is based on yolov5. Please see GetStart.md for the Oriented Detection basic usage.
I have used utility functions from other wonderful open-source projects. Espeicially thank the authors of:
- ultralytics/yolov5.
- Thinklab-SJTU/CSL_RetinaNet_Tensorflow.
- jbwang1997/OBBDetection
- CAPTAIN-WHU/DOTA_devkit
想要了解相关实现的细节和原理可以看我的知乎文章:
在使用中有任何问题,欢迎反馈给我,可以用以下联系方式跟我交流
- 知乎(@略略略)
- 代码问题提issues,其他问题请知乎上联系
Name : "胡凯旋"
describe myself:"咸鱼一枚"