forked from hustvl/PD-Quant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhubconf.py
71 lines (59 loc) · 2.33 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from collections import OrderedDict
from models.resnet import resnet18 as _resnet18
from models.resnet import resnet50 as _resnet50
from models.mobilenetv2 import mobilenetv2 as _mobilenetv2
from models.mnasnet import mnasnet as _mnasnet
from models.regnet import regnetx_600m as _regnetx_600m
from models.regnet import regnetx_3200m as _regnetx_3200m
import torch
dependencies = ['torch']
model_path = {
'resnet18': '/home/tmp/resnet18_imagenet.pth.tar',
'resnet50': '/home/tmp/resnet50_imagenet.pth.tar',
'mbv2': '/home/tmp/mobilenetv2.pth.tar',
'reg600m': '/home/tmp/regnet_600m.pth.tar',
'reg3200m': '/home/tmp/regnet_3200m.pth.tar',
'mnasnet': '/home/tmp/mnasnet.pth.tar',
}
def resnet18(pretrained=False, **kwargs):
# Call the model, load pretrained weights
model = _resnet18(**kwargs)
if pretrained:
checkpoint = torch.load(model_path['resnet18'], map_location='cpu')
model.load_state_dict(checkpoint)
return model
def resnet50(pretrained=False, **kwargs):
# Call the model, load pretrained weights
model = _resnet50(**kwargs)
if pretrained:
checkpoint = torch.load(model_path['resnet50'], map_location='cpu')
model.load_state_dict(checkpoint)
return model
def mobilenetv2(pretrained=False, **kwargs):
# Call the model, load pretrained weights
model = _mobilenetv2(**kwargs)
if pretrained:
checkpoint = torch.load(model_path['mbv2'], map_location='cpu')
model.load_state_dict(checkpoint['model'])
return model
def regnetx_600m(pretrained=False, **kwargs):
# Call the model, load pretrained weights
model = _regnetx_600m(**kwargs)
if pretrained:
checkpoint = torch.load(model_path['reg600m'], map_location='cpu')
model.load_state_dict(checkpoint)
return model
def regnetx_3200m(pretrained=False, **kwargs):
# Call the model, load pretrained weights
model = _regnetx_3200m(**kwargs)
if pretrained:
checkpoint = torch.load(model_path['reg3200m'], map_location='cpu')
model.load_state_dict(checkpoint)
return model
def mnasnet(pretrained=False, **kwargs):
# Call the model, load pretrained weights
model = _mnasnet(**kwargs)
if pretrained:
checkpoint = torch.load(model_path['mnasnet'], map_location='cpu')
model.load_state_dict(checkpoint)
return model