@@ -26,9 +26,9 @@ def load_data(data_folder, batch_size, train, num_workers=0, **kwargs):
26
26
27
27
def get_data_loader (dataset , batch_size , shuffle = True , drop_last = False , num_workers = 0 , infinite_data_loader = False , ** kwargs ):
28
28
if not infinite_data_loader :
29
- return torch .utils .data .DataLoader (dataset , batch_size = batch_size , shuffle = True , drop_last = drop_last , num_workers = num_workers , ** kwargs )
29
+ return torch .utils .data .DataLoader (dataset , batch_size = batch_size , shuffle = shuffle , drop_last = drop_last , num_workers = num_workers , ** kwargs )
30
30
else :
31
- return InfiniteDataLoader (dataset , batch_size = batch_size , shuffle = True , drop_last = drop_last , num_workers = num_workers , ** kwargs )
31
+ return InfiniteDataLoader (dataset , batch_size = batch_size , shuffle = shuffle , drop_last = drop_last , num_workers = num_workers , ** kwargs )
32
32
33
33
class _InfiniteSampler (torch .utils .data .Sampler ):
34
34
"""Wraps another Sampler to yield an infinite stream."""
@@ -66,4 +66,4 @@ def __iter__(self):
66
66
yield next (self ._infinite_iterator )
67
67
68
68
def __len__ (self ):
69
- return 0 # Always return 0
69
+ return 0 # Always return 0
0 commit comments