-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrca_jfpm.py
92 lines (74 loc) · 2.65 KB
/
trca_jfpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# for running locally
import os
cwd = os.getcwd()
import sys
# path = os.path.join(cwd, "..\\..\\")
path = cwd
sys.path.append(path)
# imports
import numpy as np
import logging
logging.getLogger('lightning').setLevel(0)
import warnings
warnings.filterwarnings('ignore')
from splearn.data import MultipleSubjects, JFPM
from splearn.utils import Logger, Config
from splearn.filter.butterworth import butter_bandpass_filter
from splearn.filter.notch import notch_filter
from splearn.cross_decomposition.trca import TRCA
from splearn.cross_validate.leave_one_out import block_evaluation
config = {
"experiment_name": "trcaEnsemble_jfpm",
"data": {
"load_subject_ids": np.arange(1,11),
"root": "../data/jfpm",
"duration": 1,
},
"trca": {
"ensemble": True
},
"seed": 1234
}
main_logger = Logger(filename_postfix=config["experiment_name"])
main_logger.write_to_log("Config")
main_logger.write_to_log(config)
config = Config(config)
# define custom preprocessing steps
def func_preprocessing(data):
data_x = data.data
data_x = notch_filter(data_x, sampling_rate=data.sampling_rate, notch_freq=50.0)
data_x = butter_bandpass_filter(data_x, lowcut=7, highcut=90, sampling_rate=data.sampling_rate, order=6)
start_t = 35
end_t = start_t + (config.data.duration * data.sampling_rate)
data_x = data_x[:,:,:,start_t:end_t]
data.set_data(data_x)
# load data
data = MultipleSubjects(
dataset=JFPM,
root=os.path.join(path,config.data.root),
subject_ids=config.data.load_subject_ids,
func_preprocessing=func_preprocessing,
verbose=True,
)
num_channel = data.data.shape[2]
num_classes = data.stimulus_frequencies.shape[0]
signal_length = data.data.shape[3]
def leave_one_block_evaluation(classifier, X, Y, block_seq_labels=None):
test_results_acc = []
blocks, targets, channels, samples = X.shape
main_logger.write_to_log("Begin", break_line=True)
for block_i in range(blocks):
test_acc = block_evaluation(classifier, X, Y, block_i)
test_results_acc.append(test_acc)
this_result = {
"test_subject_id": block_i+1,
"acc": test_acc,
}
main_logger.write_to_log(this_result)
mean_acc = np.array(test_results_acc).mean().round(3)*100
print(f'Mean test accuracy: {mean_acc}%')
main_logger.write_to_log("Mean acc: "+str(mean_acc), break_line=True)
trca_classifier = TRCA(sampling_rate=data.sampling_rate, ensemble=config.trca.ensemble)
print("data:", data.data.shape)
print("targets:", data.targets.shape)
leave_one_block_evaluation(classifier=trca_classifier, X=data.data, Y=data.targets)