-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathmodel_training.py
47 lines (33 loc) · 1.7 KB
/
model_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def run_epoch(dataloader, is_training=False):
epoch_loss = 0
if is_training:
model.train()
else:
model.eval()
for idx, (x, y) in enumerate(dataloader):
if is_training:
optimizer.zero_grad()
batchsize = x.shape[0]
x = x.to(config["training"]["device"])
y = y.to(config["training"]["device"])
out = model(x)
loss = criterion(out.contiguous(), y.contiguous())
if is_training:
loss.backward()
optimizer.step()
epoch_loss += (loss.detach().item() / batchsize)
lr = scheduler.get_last_lr()[0]
return epoch_loss, lr
train_dataloader = DataLoader(dataset_train, batch_size=config["training"]["batch_size"], shuffle=True)
val_dataloader = DataLoader(dataset_val, batch_size=config["training"]["batch_size"], shuffle=True)
model = LSTMModel(input_size=config["model"]["input_size"], hidden_layer_size=config["model"]["lstm_size"], num_layers=config["model"]["num_lstm_layers"], output_size=1, dropout=config["model"]["dropout"])
model = model.to(config["training"]["device"])
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=config["training"]["learning_rate"], betas=(0.9, 0.98), eps=1e-9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=config["training"]["scheduler_step_size"], gamma=0.1)
for epoch in range(config["training"]["num_epoch"]):
loss_train, lr_train = run_epoch(train_dataloader, is_training=True)
loss_val, lr_val = run_epoch(val_dataloader)
scheduler.step()
print('Epoch[{}/{}] | loss train:{:.6f}, test:{:.6f} | lr:{:.6f}'
.format(epoch+1, config["training"]["num_epoch"], loss_train, loss_val, lr_train))