-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_mixmatch.py
370 lines (297 loc) · 12.6 KB
/
train_mixmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
from __future__ import print_function
import argparse
import os
import random
import shutil
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
from progress.bar import Bar as Bar
from tensorboardX import SummaryWriter
from dataset.cifar100 import get_cifar100_dataloaders
from helper.util import AverageMeter, accuracy
from models import model_dict
parser = argparse.ArgumentParser(description='PyTorch MixMatch Training')
# Optimization options
parser.add_argument('--ood', default='tin', type=str, choices=['tin', 'places'])
parser.add_argument('--arch', default='wrn_40_1', type=str, choices=['wrn_40_1', 'resnet8x4', 'ShuffleV1'],
help='dataset name')
parser.add_argument('--epochs', default=1024, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--batch-size', default=64, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.002, type=float,
metavar='LR', help='initial learning rate')
# Miscs
parser.add_argument('--manualSeed', type=int, default=0, help='manual seed')
# Device options
parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--train-iteration', type=int, default=1024, help='Number of iteration per epoch')
parser.add_argument('--alpha', default=0.75, type=float)
parser.add_argument('--lambda-u', default=75, type=float)
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--ema-decay', default=0.999, type=float)
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
np.random.seed(args.manualSeed)
args.out = './Results/MixMATCH/' + str(args.arch) + '_ood_' + str(args.ood)
os.makedirs(args.out, exist_ok=True)
best_acc = 0 # best test accuracy
n_class = 100 # for cifar100
def main():
global best_acc
# Data
labeled_trainloader, unlabeled_trainloader, test_loader, n_data = get_cifar100_dataloaders(
batch_size=args.batch_size, num_workers=8, is_instance=True, is_sample=False, ood=args.ood)
# Model
print("==> creating %s" % args.arch)
def create_model(ema=False):
model = model_dict[args.arch](num_classes=n_class)
model = model.cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True)
cudnn.benchmark = True
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
train_criterion = SemiLoss()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
ema_optimizer = WeightEMA(model, ema_model, alpha=args.ema_decay)
start_epoch = 0
# Resume
writer = SummaryWriter(args.out)
test_accs = []
# Train and val
for epoch in range(start_epoch, args.epochs):
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
train_loss, train_loss_x, train_loss_u = train(labeled_trainloader, unlabeled_trainloader, model, optimizer,
ema_optimizer, train_criterion, epoch, use_cuda)
test_loss, test_acc = validate(test_loader, ema_model, criterion, epoch, use_cuda, mode='Test Stats ')
step = args.train_iteration * (epoch + 1)
writer.add_scalar('losses/train_loss', train_loss, step)
writer.add_scalar('losses/test_loss', test_loss, step)
writer.add_scalar('accuracy/test_acc', test_acc, step)
# save model
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'ema_state_dict': ema_model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best)
test_accs.append(test_acc)
writer.close()
print('Best acc:')
print(best_acc)
print('Mean acc:')
print(np.mean(test_accs[-20:]))
with open(args.out + '/res_%s.txt'%str(time.ctime()), 'w') as f:
f.write('%.4f' % best_acc)
f.write('\n')
f.write('%.4f' % np.mean(test_accs[-20:]))
def train(labeled_trainloader, unlabeled_trainloader, model, optimizer, ema_optimizer, criterion, epoch, use_cuda):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_x = AverageMeter()
losses_u = AverageMeter()
ws = AverageMeter()
end = time.time()
bar = Bar('Training', max=args.train_iteration)
labeled_train_iter = iter(labeled_trainloader)
unlabeled_train_iter = iter(unlabeled_trainloader)
model.train()
for batch_idx in range(args.train_iteration):
try:
inputs_x, targets_x, index_x = labeled_train_iter.next()
except:
labeled_train_iter = iter(labeled_trainloader)
inputs_x, targets_x, index_x = labeled_train_iter.next()
try:
(inputs_u, inputs_u2), _ = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
(inputs_u, inputs_u2), _ = unlabeled_train_iter.next()
# measure data loading time
data_time.update(time.time() - end)
batch_size = inputs_x.size(0)
# Transform label to one-hot
targets_x = torch.zeros(batch_size, n_class).scatter_(1, targets_x.view(-1, 1).long(), 1)
if use_cuda:
inputs_x, targets_x = inputs_x.cuda(), targets_x.cuda(non_blocking=True)
inputs_u = inputs_u.cuda()
inputs_u2 = inputs_u2.cuda()
with torch.no_grad():
# compute guessed labels of unlabel samples
outputs_u = model(inputs_u)
outputs_u2 = model(inputs_u2)
p = (torch.softmax(outputs_u, dim=1) + torch.softmax(outputs_u2, dim=1)) / 2
pt = p ** (1 / args.T)
targets_u = pt / pt.sum(dim=1, keepdim=True)
targets_u = targets_u.detach()
# mixup
all_inputs = torch.cat([inputs_x, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_u, targets_u], dim=0)
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1 - l)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a + (1 - l) * input_b
mixed_target = l * target_a + (1 - l) * target_b
# interleave labeled and unlabed samples between batches to get correct batchnorm calculation
mixed_input = list(torch.split(mixed_input, batch_size))
mixed_input = interleave(mixed_input, batch_size)
logits = [model(mixed_input[0])]
for input in mixed_input[1:]:
logits.append(model(input))
# put interleaved samples back
logits = interleave(logits, batch_size)
logits_x = logits[0]
logits_u = torch.cat(logits[1:], dim=0)
Lx, Lu, w = criterion(logits_x, mixed_target[:batch_size], logits_u, mixed_target[batch_size:],
epoch + batch_idx / args.train_iteration)
loss = Lx + w * Lu
# record loss
losses.update(loss.item(), inputs_x.size(0))
losses_x.update(Lx.item(), inputs_x.size(0))
losses_u.update(Lu.item(), inputs_x.size(0))
ws.update(w, inputs_x.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Loss_x: {loss_x:.4f} | Loss_u: {loss_u:.4f} | W: {w:.4f}'.format(
batch=batch_idx + 1,
size=args.train_iteration,
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
loss_x=losses_x.avg,
loss_u=losses_u.avg,
w=ws.avg,
)
bar.next()
bar.finish()
return (losses.avg, losses_x.avg, losses_u.avg,)
def validate(valloader, model, criterion, epoch, use_cuda, mode):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar(f'{mode}', max=len(valloader))
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(valloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(valloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def save_checkpoint(state, is_best, checkpoint=args.out, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def linear_rampup(current, rampup_length=args.epochs):
if rampup_length == 0:
return 1.0
else:
current = np.clip(current / rampup_length, 0.0, 1.0)
return float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u) ** 2)
return Lx, Lu, args.lambda_u * linear_rampup(epoch)
class WeightEMA(object):
def __init__(self, model, ema_model, alpha=0.999):
self.model = model
self.ema_model = ema_model
self.alpha = alpha
self.params = list(model.state_dict().values())
self.ema_params = list(ema_model.state_dict().values())
self.wd = 0.02 * args.lr
for param, ema_param in zip(self.params, self.ema_params):
param.data.copy_(ema_param.data)
def step(self):
one_minus_alpha = 1.0 - self.alpha
for param, ema_param in zip(self.params, self.ema_params):
if ema_param.dtype == torch.float32:
ema_param.mul_(self.alpha)
ema_param.add_(param * one_minus_alpha)
# customized weight decay
param.mul_(1 - self.wd)
def interleave_offsets(batch, nu):
groups = [batch // (nu + 1)] * (nu + 1)
for x in range(batch - sum(groups)):
groups[-x - 1] += 1
offsets = [0]
for g in groups:
offsets.append(offsets[-1] + g)
assert offsets[-1] == batch
return offsets
def interleave(xy, batch):
nu = len(xy) - 1
offsets = interleave_offsets(batch, nu)
xy = [[v[offsets[p]:offsets[p + 1]] for p in range(nu + 1)] for v in xy]
for i in range(1, nu + 1):
xy[0][i], xy[i][i] = xy[i][i], xy[0][i]
return [torch.cat(v, dim=0) for v in xy]
if __name__ == '__main__':
main()