forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
launch_height_ray.py
76 lines (65 loc) · 2.19 KB
/
launch_height_ray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import logging
from pathlib import Path
from ray.tune.schedulers import AsyncHyperBandScheduler
from ray.tune.suggest.skopt import SkOptSearch
import numpy as np
from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import RayTuneScheduler
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import randint
if __name__ == "__main__":
logging.getLogger().setLevel(logging.DEBUG)
random_seed = 31415927
max_steps = 100
n_workers = 4
config_space = {
"steps": max_steps,
"width": randint(0, 20),
"height": randint(-100, 100),
}
entry_point = str(
Path(__file__).parent
/ "training_scripts"
/ "height_example"
/ "train_height.py"
)
mode = "min"
metric = "mean_loss"
# Local back-end
trial_backend = LocalBackend(entry_point=entry_point)
# Hyperband scheduler with SkOpt searcher
np.random.seed(random_seed)
ray_searcher = SkOptSearch()
ray_searcher.set_search_properties(
mode=mode,
metric=metric,
config=RayTuneScheduler.convert_config_space(config_space),
)
ray_scheduler = AsyncHyperBandScheduler(
max_t=max_steps, time_attr="step", mode=mode, metric=metric
)
scheduler = RayTuneScheduler(
config_space=config_space,
ray_scheduler=ray_scheduler,
ray_searcher=ray_searcher,
)
stop_criterion = StoppingCriterion(max_wallclock_time=30)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
)
tuner.run()