Skip to content
/ SoyMeta Public
forked from LingtaoSu/SoyMeta

Large scale meta-analysis of soybean

Notifications You must be signed in to change notification settings

jlv100/SoyMeta

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Large-scale integrative analysis of soybean transcriptome using an unsupervised autoencoder model

==================================================================

AutoEncoder for Data Compression


We used one hidden layer for all the AE models, with the size set as half sample number, which results in a 50%-dimension reduction. The minibatch size is set to 12, and we trained the model with the Adam optimizer using a learning rate of 0.0001. We used the ReLU activation to all layers except the last layer, where we applied softplus activation.

Adversarial Deconfounding Autoencoder for Batch Correction

Introduced by Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle

The AD-AE (Adversarial Deconfounding AutoEncoder) approach to deconfound the gene expression latent spaces. The model consists of two neural networks: (i) an autoencoder to generate an embedding that can successfully reconstruct the original measurements and (ii) an adversary that is trained to predict the confounder from the embedding. The idea is to jointly train the networks to generate embeddings that can encode as much information as possible while not being able to predict the confounders. By applying AD-AE to two distinct gene expression datasets, we show that our model can (1) generate embeddings that do not encode confounder information, (2) conserve the biological signals present in the original space, and (3) generalize successfully across different confounder domains. We demonstrate that AD-AE can outperform standard autoencoder as well as other deconfounding approaches.

About

Large scale meta-analysis of soybean

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published