forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapic_tsc.c
207 lines (171 loc) · 5.58 KB
/
apic_tsc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*
* Copyright (c) 2021 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/drivers/interrupt_controller/loapic.h>
#include <zephyr/irq.h>
#define IA32_TSC_DEADLINE_MSR 0x6e0
#define IA32_TSC_ADJUST_MSR 0x03b
#define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \
/ (uint64_t) CONFIG_SYS_CLOCK_TICKS_PER_SEC)
struct apic_timer_lvt {
uint8_t vector : 8;
uint8_t unused0 : 8;
uint8_t masked : 1;
enum { ONE_SHOT, PERIODIC, TSC_DEADLINE } mode: 2;
uint32_t unused2 : 13;
};
static struct k_spinlock lock;
static uint64_t last_announce;
static union { uint32_t val; struct apic_timer_lvt lvt; } lvt_reg;
static ALWAYS_INLINE uint64_t rdtsc(void)
{
uint32_t hi, lo;
__asm__ volatile("rdtsc" : "=d"(hi), "=a"(lo));
return lo + (((uint64_t)hi) << 32);
}
static void isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ticks = (rdtsc() - last_announce) / CYC_PER_TICK;
last_announce += ticks * CYC_PER_TICK;
k_spin_unlock(&lock, key);
sys_clock_announce(ticks);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
sys_clock_set_timeout(1, false);
}
}
static inline void wrmsr(int32_t msr, uint64_t val)
{
uint32_t hi = (uint32_t) (val >> 32);
uint32_t lo = (uint32_t) val;
__asm__ volatile("wrmsr" :: "d"(hi), "a"(lo), "c"(msr));
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint64_t now = rdtsc();
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t expires = now + MAX(ticks - 1, 0) * CYC_PER_TICK;
expires = last_announce + (((expires - last_announce + CYC_PER_TICK - 1)
/ CYC_PER_TICK) * CYC_PER_TICK);
/* The second condition is to catch the wraparound.
* Interpreted strictly, the IA SDM description of the
* TSC_DEADLINE MSR implies that it will trigger an immediate
* interrupt if we try to set an expiration across the 64 bit
* rollover. Unfortunately there's no way to test that as on
* real hardware it requires more than a century of uptime,
* but this is cheap and safe.
*/
if (ticks == K_TICKS_FOREVER || expires < last_announce) {
expires = UINT64_MAX;
}
wrmsr(IA32_TSC_DEADLINE_MSR, expires);
k_spin_unlock(&lock, key);
}
uint32_t sys_clock_elapsed(void)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = (rdtsc() - last_announce) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t) rdtsc();
}
uint64_t sys_clock_cycle_get_64(void)
{
return rdtsc();
}
static inline uint32_t timer_irq(void)
{
/* The Zephyr APIC API is... idiosyncratic. The timer is a
* "local vector table" interrupt. These aren't system IRQs
* presented to the IO-APIC, they're indices into a register
* array in the local APIC. By Zephyr convention they come
* after all the external IO-APIC interrupts, but that number
* changes depending on device configuration so we have to
* fetch it at runtime. The timer happens to be the first
* entry in the table.
*/
return z_loapic_irq_base();
}
/* The TSC_ADJUST MSR implements a synchronized offset such that
* multiple CPUs (within a socket, anyway) can synchronize exactly, or
* implement managed timing spaces for guests in a recoverable way,
* etc... We set it to zero on all cores for simplicity, because
* firmware often leaves it in an inconsistent state between cores.
*/
static void clear_tsc_adjust(void)
{
/* But don't touch it on ACRN, where an hypervisor bug
* confuses the APIC emulation and deadline interrupts don't
* arrive.
*/
#ifndef CONFIG_BOARD_ACRN
wrmsr(IA32_TSC_ADJUST_MSR, 0);
#endif
}
void smp_timer_init(void)
{
/* Copy the LVT configuration from CPU0, because IRQ_CONNECT()
* doesn't know how to manage LVT interrupts for anything
* other than the calling/initial CPU. Same fence needed to
* prevent later MSR writes from reordering before the APIC
* configuration write.
*/
x86_write_loapic(LOAPIC_TIMER, lvt_reg.val);
__asm__ volatile("mfence" ::: "memory");
clear_tsc_adjust();
irq_enable(timer_irq());
}
static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
__asm__ volatile("cpuid"
: "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(*eax), "c"(*ecx));
}
static int sys_clock_driver_init(const struct device *dev)
{
#ifdef CONFIG_ASSERT
uint32_t eax, ebx, ecx, edx;
eax = 1; ecx = 0;
cpuid(&eax, &ebx, &ecx, &edx);
__ASSERT((ecx & BIT(24)) != 0, "No TSC Deadline support");
eax = 0x80000007; ecx = 0;
cpuid(&eax, &ebx, &ecx, &edx);
__ASSERT((edx & BIT(8)) != 0, "No Invariant TSC support");
eax = 7; ecx = 0;
cpuid(&eax, &ebx, &ecx, &edx);
__ASSERT((ebx & BIT(1)) != 0, "No TSC_ADJUST MSR support");
#endif
clear_tsc_adjust();
/* Timer interrupt number is runtime-fetched, so can't use
* static IRQ_CONNECT()
*/
irq_connect_dynamic(timer_irq(), CONFIG_APIC_TIMER_IRQ_PRIORITY, isr, 0, 0);
lvt_reg.val = x86_read_loapic(LOAPIC_TIMER);
lvt_reg.lvt.mode = TSC_DEADLINE;
lvt_reg.lvt.masked = 0;
x86_write_loapic(LOAPIC_TIMER, lvt_reg.val);
/* Per the SDM, the TSC_DEADLINE MSR is not serializing, so
* this fence is needed to be sure that an upcoming MSR write
* (i.e. a timeout we're about to set) cannot possibly reorder
* around the initialization we just did.
*/
__asm__ volatile("mfence" ::: "memory");
last_announce = rdtsc();
irq_enable(timer_irq());
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
sys_clock_set_timeout(1, false);
}
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);