forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuantUtils.cc
835 lines (769 loc) · 34.9 KB
/
QuantUtils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
#define FBGEMM_EXPORTS
#include <algorithm>
#include <iterator>
#include <numeric>
#include <type_traits>
#include "fbgemm/QuantUtils.h"
#include <cpuinfo.h>
#include "fbgemm/Fbgemm.h"
#include "fbgemm/Types.h"
namespace fbgemm {
using namespace std;
// Use fp16_min as the small scale cutoff because we don't want to use scales in
// fp16 subnormal range. This is to be consistent with Glow and FakeLowP
// implementation for NNPI.
constexpr float SMALL_SCALE_THRESHOLD = 6.1e-5f;
float TensorQuantizationParams::Min() const {
return Dequantize(0, *this);
}
float TensorQuantizationParams::Max() const {
return Dequantize((1 << precision) - 1, *this);
}
TensorQuantizationParams ChooseQuantizationParams(
float min,
float max,
int32_t qmin,
int32_t qmax,
bool preserve_sparsity,
bool force_scale_power_of_two) {
if (min < 0 && max > 0 && preserve_sparsity) {
int symmetric_qmin = -((qmax - qmin) / 2 + 1);
int symmetric_qmax = (qmax - qmin) / 2;
double max_scale =
std::max(fabs(min / symmetric_qmin), fabs(max / symmetric_qmax));
min = max_scale * symmetric_qmin;
max = max_scale * symmetric_qmax;
}
// We extend the [min, max] interval to ensure that it contains 0.
// Otherwise, we would not meet the requirement that 0 be an exactly
// representable value.
min = std::min(min, 0.f);
max = std::max(max, 0.f);
// Use double precision for intermediate computation but use single precision
// in final number to reflect the actual number used during quantization.
float scale = (static_cast<double>(max) - min) / (qmax - qmin);
// If scale is 0 or too small so its reciprocal is infinity, we arbitrary
// adjust the scale to 0.1 . We want to avoid scale's reciprocal being
// infinity because some of fbgemm code pre-computes scale's reciprocal to do
// multiplication instead of division in the time critical part of code.
if (scale == 0.0f || isinf(1.0f / scale)) {
scale = 0.1;
}
assert(scale > 0);
if (force_scale_power_of_two) {
if (scale < 1) {
scale = 1.0 / (1 << static_cast<int>(floor(log2(1.0 / scale))));
} else {
scale = 1 << static_cast<int>(ceil(log2(scale)));
}
}
// Cut off small scale
if (scale < SMALL_SCALE_THRESHOLD) {
float org_scale = scale;
scale = SMALL_SCALE_THRESHOLD;
// Adjust the min and max based on the new scale
if (min == 0.0f) {
max = SMALL_SCALE_THRESHOLD * (qmax - qmin);
} else if (max == 0.0f) {
min = -SMALL_SCALE_THRESHOLD * (qmax - qmin);
} else {
float amplifier = SMALL_SCALE_THRESHOLD / org_scale;
min *= amplifier;
max *= amplifier;
}
}
// Zero-point computation.
// First the initial floating-point computation. The zero-point can be
// determined from solving an affine equation for any known pair
// (real value, corresponding quantized value).
// We know two such pairs: (rmin, qmin) and (rmax, qmax).
// The arithmetic error on the zero point computed from either pair
// will be roughly machine_epsilon * (sum of absolute values of terms)
// so we want to use the variant that adds the smaller terms.
double zero_point_from_min = qmin - min / static_cast<double>(scale);
double zero_point_from_max = qmax - max / static_cast<double>(scale);
double zero_point_from_min_error =
std::abs(qmin) + std::abs(min / static_cast<double>(scale));
double zero_point_from_max_error =
std::abs(qmax) + std::abs(max / static_cast<double>(scale));
double initial_zero_point =
zero_point_from_min_error < zero_point_from_max_error
? zero_point_from_min
: zero_point_from_max;
// Note: preserve_sparsity here means symmetric quantization.
// for symmetric quantization, we force zero_point
// to be a middle value between qmin and qmax.
// If either min or max is 0, then we just use 0 as zero_point.
if (min < 0 && max > 0 && preserve_sparsity) {
initial_zero_point = static_cast<double>(qmin + qmax) / 2;
}
// Now we need to nudge the zero point to be an integer
// (our zero points are integer, and this is motivated by the requirement
// to be able to represent the real value "0" exactly as a quantized value,
// which is required in multiple places, for example in Im2col with zero
// padding).
int32_t nudged_zero_point = 0;
if (initial_zero_point < qmin) {
nudged_zero_point = qmin;
} else if (initial_zero_point > qmax) {
nudged_zero_point = qmax;
} else {
nudged_zero_point = nearbyint(initial_zero_point);
}
TensorQuantizationParams result;
result.scale = scale;
result.zero_point = nudged_zero_point;
return result;
}
void ChooseRequantizationMultiplier(
float real_multiplier,
int32_t* quantized_multiplier,
int* right_shift,
int requantization_multiplier_precision) {
assert(real_multiplier != 0.f);
// Assuming requantization_multiplier_precision_ = 31,
// the default right shift is 31 when the real multiplier is already
// in interval [1/2, 1).
// Multiplying a 32-bit signed integer with all 31 bits except the sign bit
// is used followed by 31-bit right shift implements multiplying with a real
// number in [1/2, 1).
// We want to utilize all 31 bits except the sign bit in the 32-bit signed
// integer to get the best accuracy.
int s = 31;
// We want to bring the real multiplier into the interval [1/2, 1).
// We can do so by multiplying it by two, and recording how many times
// we multiplied by two so that we can compensate that by a right
// shift by the same amount.
if (real_multiplier > 0.f) {
while (real_multiplier < 0.5f) {
real_multiplier *= 2.f;
s++;
}
while (real_multiplier > 1.f) {
real_multiplier /= 2.f;
s--;
}
}
// Now that the real multiplier is in [1/2, 1), we convert it
// into a fixed-point number.
int64_t q = nearbyint(
real_multiplier * (1ll << (requantization_multiplier_precision - 1)));
assert(q <= (1ll << (requantization_multiplier_precision - 1)));
// Handle the special case when the real multiplier was so close to 1
// that its fixed-point approximation was undistinguishable from 1.
// We handle this by dividing it by two, and remembering to decrement
// the right shift amount.
if (q == (1ll << (requantization_multiplier_precision - 1))) {
q /= 2;
s--;
}
assert(s >= 0);
assert(q >= 0);
assert(q <= numeric_limits<int32_t>::max());
*quantized_multiplier = static_cast<int32_t>(q);
*right_shift = s;
assert(s < 64);
}
////////////////////////////////////////////////////////////////////////////////
// Utility functions
#define FBGEMM_SPECIALIZED_QUANTIZE(T, LEGACY) \
template <> \
FBGEMM_API void Quantize<T, LEGACY>( \
const float* src, \
T* dst, \
const int len, \
const TensorQuantizationParams& qparams, \
int thread_id, \
int num_threads) { \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = Quantize<T, LEGACY>(src[i], qparams); \
} \
}
FBGEMM_SPECIALIZED_QUANTIZE(uint16_t, true)
FBGEMM_SPECIALIZED_QUANTIZE(int16_t, true)
FBGEMM_SPECIALIZED_QUANTIZE(int32_t, true)
FBGEMM_SPECIALIZED_QUANTIZE(uint16_t, false)
FBGEMM_SPECIALIZED_QUANTIZE(int16_t, false)
FBGEMM_SPECIALIZED_QUANTIZE(int32_t, false)
#undef FBGEMM_SPECIALIZED_QUANTIZE
#define FBGEMM_SPECIALIZED_QUANTIZE_AVX2(T, LEGACY) \
template <> \
FBGEMM_API void Quantize<T, LEGACY>( \
const float* src, \
T* dst, \
int len, \
const TensorQuantizationParams& qparams, \
int thread_id, \
int num_threads) { \
bool avx2_support = cpuinfo_initialize() && fbgemmHasAvx2Support(); \
bool fma_support = cpuinfo_has_x86_fma3(); \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
if (avx2_support && fma_support && qparams.precision == 8) { \
/* fast path */ \
QuantizeAvx2<T, LEGACY>( \
&src[i_begin], &dst[i_begin], i_end - i_begin, qparams); \
} else { \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = Quantize<T, LEGACY>(src[i], qparams); \
} \
} \
}
FBGEMM_SPECIALIZED_QUANTIZE_AVX2(int8_t, true)
FBGEMM_SPECIALIZED_QUANTIZE_AVX2(uint8_t, true)
FBGEMM_SPECIALIZED_QUANTIZE_AVX2(int8_t, false)
FBGEMM_SPECIALIZED_QUANTIZE_AVX2(uint8_t, false)
#undef FBGEMM_SPECIALIZED_QUANTIZE_AVX2
#define FBGEMM_SPECIALIZED_FUSED_QUANTIZE_DEQUANTIZE_AVX2(T) \
template <> \
FBGEMM_API void FusedQuantizeDequantize<T>( \
const float* src, \
float* dst, \
int len, \
const TensorQuantizationParams& qparams, \
int thread_id, \
int num_threads, \
float noise_ratio) { \
bool avx2_support = cpuinfo_initialize() && fbgemmHasAvx2Support(); \
bool fma_support = cpuinfo_has_x86_fma3(); \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
if (avx2_support && fma_support && qparams.precision == 8) { \
/* fast path */ \
FusedQuantizeDequantizeAvx2<T>( \
&src[i_begin], &dst[i_begin], i_end - i_begin, qparams); \
} else if (noise_ratio <= 0.0f) { \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = FusedQuantizeDequantize<T>(src[i], qparams); \
} \
} else { \
throw std::runtime_error("Failed to initialize cpuinfo!"); \
} \
}
FBGEMM_SPECIALIZED_FUSED_QUANTIZE_DEQUANTIZE_AVX2(int8_t)
FBGEMM_SPECIALIZED_FUSED_QUANTIZE_DEQUANTIZE_AVX2(uint8_t)
#undef FBGEMM_SPECIALIZED_FUSED_QUANTIZE_DEQUANTIZE_AVX2
#define FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX(T) \
template <> \
FBGEMM_API void QuantizeGroupwise<T, layout_t::KCX>( \
const float* src, \
int N, \
int C, \
int X, \
int G, \
const float* scales, \
const std::int32_t* zero_points, \
T* dst) { \
assert(C % G == 0); \
int C_per_G = C / G; \
for (int i = 0; i < N; ++i) { \
for (int g = 0; g < G; ++g) { \
float scale = scales[g]; \
int32_t zero_point = zero_points[g]; \
for (int c = 0; c < C / G; ++c) { \
for (int x = 0; x < X; ++x) { \
dst[(i * C + g * C_per_G + c) * X + x] = Quantize<T>( \
src[(i * C + g * C_per_G + c) * X + x], \
zero_point, \
scale, \
8 * sizeof(T)); \
} \
} \
} \
} \
}
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX(int8_t)
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX(int32_t)
#undef FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKCX
template <>
FBGEMM_API void QuantizeGroupwise<uint8_t, layout_t::KCX>(
const float* src,
int K,
int C,
int X,
int G,
const float* scales,
const std::int32_t* zero_points,
uint8_t* dst) {
assert(C % G == 0);
int C_per_G = C / G;
fbgemm::TensorQuantizationParams qparams;
qparams.precision = 8 * sizeof(uint8_t);
bool takeFastPath =
cpuinfo_initialize() && fbgemmHasAvx2Support() && cpuinfo_has_x86_fma3();
for (int i = 0; i < K; ++i) {
for (int g = 0; g < G; ++g) {
qparams.scale = scales[g];
qparams.zero_point = zero_points[g];
if (takeFastPath) {
QuantizeAvx2(
src + (i * C + g * C_per_G) * X,
dst + (i * C + g * C_per_G) * X,
C_per_G * X,
qparams);
} else {
for (int c = 0; c < C / G; ++c) {
for (int x = 0; x < X; ++x) {
dst[(i * C + g * C_per_G + c) * X + x] = Quantize<uint8_t>(
src[(i * C + g * C_per_G + c) * X + x],
qparams.zero_point,
qparams.scale,
qparams.precision);
}
}
}
}
}
}
#define FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(T) \
template <> \
FBGEMM_API void QuantizeGroupwise<T, layout_t::KXC>( \
const float* src, \
int K, \
int C, \
int X, \
int G, \
const float* scales, \
const std::int32_t* zero_points, \
T* dst) { \
assert(C % G == 0); \
int C_per_G = C / G; \
for (int i = 0; i < K; ++i) { \
for (int x = 0; x < X; ++x) { \
for (int g = 0; g < G; ++g) { \
float scale = scales[g]; \
int32_t zero_point = zero_points[g]; \
for (int c = 0; c < C / G; ++c) { \
dst[(i * X + x) * C + g * C_per_G + c] = Quantize<T>( \
src[(i * X + x) * C + g * C_per_G + c], \
zero_point, \
scale, \
8 * sizeof(T)); \
} \
} \
} \
} \
}
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(int8_t)
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(uint8_t)
FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC(int32_t)
#undef FBGEMM_SPECIALIZED_QUANTIZEGROUPWISEKXC
////////////////////////////////////////////////////////////////////////////////
// Requantization (pure fixed-point)
int64_t SaturatingRoundingMulWithShift(int32_t a, int32_t b, int right_shift) {
int64_t a_64(a);
int64_t b_64(b);
int64_t ab_64 = a_64 * b_64;
int64_t nudge = 1ll << (right_shift - 1);
return (ab_64 + nudge) >> right_shift;
}
#define FBGEMM_SPECIALIZED_REQUANTIZE(T) \
template <> \
FBGEMM_API void Requantize<T>( \
const int32_t* src, \
T* dst, \
const int len, \
const RequantizationParams& params, \
int thread_id, \
int num_threads) { \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = Requantize<T>(src[i], params); \
} \
}
FBGEMM_SPECIALIZED_REQUANTIZE(uint16_t)
FBGEMM_SPECIALIZED_REQUANTIZE(int32_t)
#undef FBGEMM_SPECIALIZED_REQUANTIZE
template <>
FBGEMM_API void Requantize<uint8_t>(
const int32_t* src,
uint8_t* dst,
const int len,
const RequantizationParams& params,
int thread_id,
int num_threads) {
int i_begin, i_end;
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end);
if (params.target_qparams.precision == 8 && cpuinfo_initialize() &&
fbgemmHasAvx2Support()) {
RequantizeAvx2(&src[i_begin], &dst[i_begin], i_end - i_begin, params);
} else {
for (int i = i_begin; i < i_end; ++i) {
dst[i] = Requantize<uint8_t>(src[i], params);
}
}
}
template <typename T>
FBGEMM_API void RequantizeFixedPoint(
const std::int32_t* src,
T* dst,
int len,
const RequantizationParams& params,
int thread_id,
int num_threads) {
int i_begin, i_end;
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end);
if (std::is_same<T, uint8_t>::value && params.target_qparams.precision == 8 &&
cpuinfo_initialize() && fbgemmHasAvx2Support()) {
RequantizeFixedPointAvx2(
&src[i_begin], &dst[i_begin], i_end - i_begin, params);
} else {
for (int i = i_begin; i < i_end; ++i) {
dst[i] = RequantizeFixedPoint<T>(src[i], params);
}
}
}
#define FBGEMM_SPECIALIZED_REQUANTIZE(T) \
template <> \
FBGEMM_API void RequantizeFixedPoint<T>( \
const int32_t* src, \
T* dst, \
const int len, \
const RequantizationParams& params, \
int thread_id, \
int num_threads) { \
int i_begin, i_end; \
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end); \
for (int i = i_begin; i < i_end; ++i) { \
dst[i] = RequantizeFixedPoint<T>(src[i], params); \
} \
}
FBGEMM_SPECIALIZED_REQUANTIZE(uint16_t)
FBGEMM_SPECIALIZED_REQUANTIZE(int32_t)
#undef FBGEMM_SPECIALIZED_REQUANTIZE
template <>
FBGEMM_API void RequantizeFixedPoint<uint8_t>(
const int32_t* src,
uint8_t* dst,
const int len,
const RequantizationParams& params,
int thread_id,
int num_threads) {
int i_begin, i_end;
fbgemmPartition1D(thread_id, num_threads, len, i_begin, i_end);
if (params.target_qparams.precision == 8 && cpuinfo_initialize() &&
fbgemmHasAvx2Support()) {
RequantizeFixedPointAvx2(
&src[i_begin], &dst[i_begin], i_end - i_begin, params);
} else {
for (int i = i_begin; i < i_end; ++i) {
dst[i] = RequantizeFixedPoint<uint8_t>(src[i], params);
}
}
}
template <typename InputType>
void FloatOrHalfToFusedNBitRowwiseQuantizedSBHalfRef(
int bit_rate,
const InputType* input,
size_t input_rows,
int input_columns,
std::uint8_t* output) {
static_assert(
std::is_same<InputType, float>() || std::is_same<InputType, float16>(),
"Only float and float16 types are allowed.");
int num_elem_per_byte = 8 / bit_rate;
int output_columns =
(input_columns + num_elem_per_byte - 1) / num_elem_per_byte +
2 * sizeof(float16);
std::vector<float> input_row_float(input_columns);
for (size_t row = 0; row < input_rows; ++row) {
const InputType* input_row = input + row * input_columns;
std::uint8_t* output_row = output + row * output_columns;
float16* output_row_scale_bias = reinterpret_cast<float16*>(
output_row +
(input_columns + num_elem_per_byte - 1) / num_elem_per_byte);
// NOTE: this can be optimized, however we don't care much about performance
// for reference implementation.
for (int col = 0; col < input_columns; ++col) {
if (std::is_same<InputType, float>()) {
input_row_float[col] = input_row[col];
} else {
input_row_float[col] = cpu_half2float(input_row[col]);
}
}
float minimum_element =
*std::min_element(input_row_float.begin(), input_row_float.end());
float maximum_element =
*std::max_element(input_row_float.begin(), input_row_float.end());
// Truncate since bias will be represented by fp16. Keep higher precision
// max untouched.
float16 minimum_element_fp16 = cpu_float2half_rn(minimum_element);
minimum_element = cpu_half2float(minimum_element_fp16);
const float range = maximum_element - minimum_element;
float scale = range == 0 ? 1.0f : range / ((1 << bit_rate) - 1);
float16 scale_fp16 = cpu_float2half_rn(scale);
scale = cpu_half2float(scale_fp16);
if (scale == 0) {
// Corner case handling when maximum_element == minimum_element
// Any scale would work because X - minimum_element will be 0 for all X
scale = 1.0f;
}
float inverse_scale = 1.0f / scale;
if (std::isinf(inverse_scale)) {
scale = 1.0f;
inverse_scale = 1.0f;
}
output_row_scale_bias[0] = cpu_float2half_rn(scale);
output_row_scale_bias[1] = minimum_element_fp16;
for (int col = 0; col < input_columns; ++col) {
float X = input_row_float[col];
std::uint8_t quantized = std::max(
0,
std::min<int>(
std::lrintf((X - minimum_element) * inverse_scale),
(1 << bit_rate) - 1));
if (col % num_elem_per_byte == 0) {
output_row[col / num_elem_per_byte] = quantized;
} else {
output_row[col / num_elem_per_byte] |=
(quantized << ((col % num_elem_per_byte) * bit_rate));
}
}
} // for each row
}
template <typename InputType>
void FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf(
int bit_rate,
const InputType* input,
size_t input_rows,
int input_columns,
std::uint8_t* output) {
// Currenlty we can only dequantize if the number of input columns
// is a multiple of number of elements_per_byte
int num_elem_per_byte = 8 / bit_rate;
if (input_columns % num_elem_per_byte != 0) {
throw std::runtime_error("Unsupported number of columns");
}
if (cpuinfo_initialize() && fbgemmHasAvx2Support()) {
switch (bit_rate) {
case 2:
FloatOrHalfToFusedNBitRowwiseQuantizedSBHalfAvx2<InputType, 2>(
input, input_rows, input_columns, output);
break;
case 4:
FloatOrHalfToFusedNBitRowwiseQuantizedSBHalfAvx2<InputType, 4>(
input, input_rows, input_columns, output);
break;
case 8:
FloatOrHalfToFusedNBitRowwiseQuantizedSBHalfAvx2<InputType, 8>(
input, input_rows, input_columns, output);
break;
default:
FloatOrHalfToFusedNBitRowwiseQuantizedSBHalfRef<InputType>(
bit_rate, input, input_rows, input_columns, output);
}
} else {
FloatOrHalfToFusedNBitRowwiseQuantizedSBHalfRef<InputType>(
bit_rate, input, input_rows, input_columns, output);
}
}
template <typename InputType>
void FloatOrHalfToFused8BitRowwiseQuantizedSBFloatRef(
const InputType* input,
size_t input_rows,
int input_columns,
std::uint8_t* output) {
constexpr float kEpsilon = 1e-8f;
int output_columns = input_columns + 2 * sizeof(float);
std::vector<float> input_row_float(input_columns);
for (size_t row = 0; row < input_rows; ++row) {
const InputType* input_row = input + row * input_columns;
std::uint8_t* output_row = output + row * output_columns;
float* output_row_scale_bias =
reinterpret_cast<float*>(output_row + input_columns);
for (int col = 0; col < input_columns; ++col) {
if (std::is_same<InputType, float>()) {
input_row_float[col] = input_row[col];
} else {
input_row_float[col] = cpu_half2float(input_row[col]);
}
}
float minimum_element =
*std::min_element(input_row_float.begin(), input_row_float.end());
float maximum_element =
*std::max_element(input_row_float.begin(), input_row_float.end());
float range = maximum_element - minimum_element;
output_row_scale_bias[0] = range / 255.0f;
output_row_scale_bias[1] = minimum_element;
const auto inverse_scale = 255.0f / (range + kEpsilon);
for (int col = 0; col < input_columns; ++col) {
output_row[col] =
std::lrintf((input_row_float[col] - minimum_element) * inverse_scale);
}
} // for each row
}
template <typename InputType>
void FloatOrHalfToFused8BitRowwiseQuantizedSBFloat(
const InputType* input,
size_t input_rows,
int input_columns,
std::uint8_t* output) {
if (cpuinfo_initialize() && fbgemmHasAvx2Support()) {
FloatOrHalfToFused8BitRowwiseQuantizedSBFloatAvx2<InputType>(
input, input_rows, input_columns, output);
} else {
FloatOrHalfToFused8BitRowwiseQuantizedSBFloatRef<InputType>(
input, input_rows, input_columns, output);
}
}
template <typename OutputType>
void FusedNBitRowwiseQuantizedSBHalfToFloatOrHalfRef(
int bit_rate,
const uint8_t* input,
size_t input_rows,
int input_columns,
OutputType* output) {
static_assert(
std::is_same<OutputType, float>() || std::is_same<OutputType, float16>(),
"Only float and float16 types are allowed.");
int num_elem_per_byte = 8 / bit_rate;
int output_columns =
(input_columns - 2 * sizeof(float16)) * num_elem_per_byte;
for (size_t row = 0; row < input_rows; ++row) {
const std::uint8_t* input_row = input + row * input_columns;
const float16* input_row_scale_bias = reinterpret_cast<const float16*>(
input_row +
(output_columns + num_elem_per_byte - 1) / num_elem_per_byte);
float scale = cpu_half2float(input_row_scale_bias[0]);
float bias = cpu_half2float(input_row_scale_bias[1]);
OutputType* output_row = output + row * output_columns;
for (int col = 0; col < output_columns; ++col) {
std::uint8_t quantized = input_row[col / num_elem_per_byte];
quantized >>= (col % num_elem_per_byte) * bit_rate;
quantized &= (1 << bit_rate) - 1;
float output_value = scale * quantized + bias;
if (std::is_same<OutputType, float>()) {
output_row[col] = output_value;
} else {
output_row[col] = cpu_float2half_rn(output_value);
}
}
}
}
template <typename OutputType>
void FusedNBitRowwiseQuantizedSBHalfToFloatOrHalf(
int bit_rate,
const uint8_t* input,
size_t input_rows,
int input_columns,
OutputType* output) {
if (cpuinfo_initialize() && fbgemmHasAvx2Support()) {
switch (bit_rate) {
case 2:
FusedNBitRowwiseQuantizedSBHalfToFloatOrHalfAvx2<OutputType, 2>(
input, input_rows, input_columns, output);
break;
case 4:
FusedNBitRowwiseQuantizedSBHalfToFloatOrHalfAvx2<OutputType, 4>(
input, input_rows, input_columns, output);
break;
case 8:
FusedNBitRowwiseQuantizedSBHalfToFloatOrHalfAvx2<OutputType, 8>(
input, input_rows, input_columns, output);
break;
default:
FusedNBitRowwiseQuantizedSBHalfToFloatOrHalfRef<OutputType>(
bit_rate, input, input_rows, input_columns, output);
}
} else {
FusedNBitRowwiseQuantizedSBHalfToFloatOrHalfRef<OutputType>(
bit_rate, input, input_rows, input_columns, output);
}
}
template <typename OutputType>
void Fused8BitRowwiseQuantizedSBFloatToFloatOrHalfRef(
const std::uint8_t* input,
size_t input_rows,
int input_columns,
OutputType* output) {
int output_columns = input_columns - 2 * sizeof(float);
for (size_t row = 0; row < input_rows; ++row) {
const std::uint8_t* input_row = input + row * input_columns;
const float* input_row_scale_bias =
reinterpret_cast<const float*>(input_row + output_columns);
OutputType* output_row = output + row * output_columns;
for (int col = 0; col < output_columns; ++col) {
float output_value =
input_row[col] * input_row_scale_bias[0] + input_row_scale_bias[1];
if (std::is_same<OutputType, float>()) {
output_row[col] = output_value;
} else {
output_row[col] = cpu_float2half_rn(output_value);
}
}
}
}
template <typename OutputType>
void Fused8BitRowwiseQuantizedSBFloatToFloatOrHalf(
const std::uint8_t* input,
size_t input_rows,
int input_columns,
OutputType* output) {
if (cpuinfo_initialize() && fbgemmHasAvx2Support()) {
Fused8BitRowwiseQuantizedSBFloatToFloatOrHalfAvx2<OutputType>(
input, input_rows, input_columns, output);
} else {
Fused8BitRowwiseQuantizedSBFloatToFloatOrHalfRef<OutputType>(
input, input_rows, input_columns, output);
}
}
#define INSTANTIATE_QuantizationFunctions(type) \
template FBGEMM_API void \
FloatOrHalfToFusedNBitRowwiseQuantizedSBHalfRef<type>( \
int bit_rate, \
const type* input, \
size_t input_rows, \
int input_columns, \
std::uint8_t* output); \
template FBGEMM_API void FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf<type>( \
int bit_rate, \
const type* input, \
size_t input_rows, \
int input_columns, \
std::uint8_t* output); \
template FBGEMM_API void \
FusedNBitRowwiseQuantizedSBHalfToFloatOrHalfRef<type>( \
int bit_rate, \
const uint8_t* input, \
size_t input_rows, \
int input_columns, \
type* output); \
template FBGEMM_API void FusedNBitRowwiseQuantizedSBHalfToFloatOrHalf<type>( \
int bit_rate, \
const uint8_t* input, \
size_t input_rows, \
int input_columns, \
type* output); \
template FBGEMM_API void \
FloatOrHalfToFused8BitRowwiseQuantizedSBFloatRef<type>( \
const type* input, \
size_t input_rows, \
int input_columns, \
std::uint8_t* output); \
template FBGEMM_API void \
FloatOrHalfToFused8BitRowwiseQuantizedSBFloat<type>( \
const type* input, \
size_t input_rows, \
int input_columns, \
std::uint8_t* output); \
template FBGEMM_API void \
Fused8BitRowwiseQuantizedSBFloatToFloatOrHalfRef<type>( \
const uint8_t* input, \
size_t input_rows, \
int input_columns, \
type* output); \
template FBGEMM_API void \
Fused8BitRowwiseQuantizedSBFloatToFloatOrHalf<type>( \
const uint8_t* input, \
size_t input_rows, \
int input_columns, \
type* output);
// clang-format off
INSTANTIATE_QuantizationFunctions(float)
INSTANTIATE_QuantizationFunctions(float16)
// clang-format on
#undef INSTANTIATE_QuantizationFunctions
} // namespace fbgemm