forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Utils.cc
542 lines (496 loc) · 15.7 KB
/
Utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include "fbgemm/Utils.h"
#include <cpuinfo.h>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <limits>
#include <new>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
namespace fbgemm {
/**
* @brief Compare the reference and test result matrix to check the correctness.
* @param ref The buffer for the reference result matrix.
* @param test The buffer for the test result matrix.
* @param m The height of the reference and test result matrix.
* @param n The width of the reference and test result matrix.
* @param ld The leading dimension of the reference and test result matrix.
* @param max_mismatches_to_report The maximum number of tolerable mismatches to
* report.
* @param atol The tolerable error.
* @retval false If the number of mismatches for reference and test result
* matrix exceeds max_mismatches_to_report.
* @retval true If the number of mismatches for reference and test result matrix
* is tolerable.
*/
template <typename T>
int compare_buffers(
const T* ref,
const T* test,
int m,
int n,
int ld,
int max_mismatches_to_report,
float atol /*=1e-3*/) {
size_t mismatches = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
T reference = ref[i * ld + j], actual = test[i * ld + j];
if (std::abs(reference - actual) > atol) {
std::cout << "\tmismatch at (" << i << ", " << j << ")" << std::endl;
if (std::is_integral<T>::value) {
std::cout << "\t reference:" << static_cast<int64_t>(reference)
<< " test:" << static_cast<int64_t>(actual) << std::endl;
} else {
std::cout << "\t reference:" << reference << " test:" << actual
<< std::endl;
}
mismatches++;
if (mismatches > max_mismatches_to_report) {
return 1;
}
}
}
}
return 0;
}
/**
* @brief Print the matrix.
* @param op Transpose type of the matrix.
* @param R The height of the matrix.
* @param C The width of the matrix.
* @param ld The leading dimension of the matrix.
* @param name The prefix string before printing the matrix.
*/
template <typename T>
void printMatrix(
matrix_op_t op,
const T* inp,
size_t R,
size_t C,
size_t ld,
std::string name) {
// R: number of rows in op(inp)
// C: number of cols in op(inp)
// ld: leading dimension in inp
std::cout << name << ":"
<< "[" << R << ", " << C << "]" << std::endl;
bool tr = (op == matrix_op_t::Transpose);
for (auto r = 0; r < R; ++r) {
for (auto c = 0; c < C; ++c) {
T res = tr ? inp[c * ld + r] : inp[r * ld + c];
if (std::is_integral<T>::value) {
std::cout << std::setw(5) << static_cast<int64_t>(res) << " ";
} else {
std::cout << std::setw(5) << res << " ";
}
}
std::cout << std::endl;
}
}
template int compare_buffers<float>(
const float* ref,
const float* test,
int m,
int n,
int ld,
int max_mismatches_to_report,
float atol);
template int compare_buffers<int32_t>(
const int32_t* ref,
const int32_t* test,
int m,
int n,
int ld,
int max_mismatches_to_report,
float atol);
template int compare_buffers<uint8_t>(
const uint8_t* ref,
const uint8_t* test,
int m,
int n,
int ld,
int max_mismatches_to_report,
float atol);
template int compare_buffers<int64_t>(
const int64_t* ref,
const int64_t* test,
int m,
int n,
int ld,
int max_mismatches_to_report,
float atol);
template void printMatrix<float>(
matrix_op_t op,
const float* inp,
size_t R,
size_t C,
size_t ld,
std::string name);
template void printMatrix<int8_t>(
matrix_op_t op,
const int8_t* inp,
size_t R,
size_t C,
size_t ld,
std::string name);
template void printMatrix<uint8_t>(
matrix_op_t op,
const uint8_t* inp,
size_t R,
size_t C,
size_t ld,
std::string name);
template void printMatrix<int32_t>(
matrix_op_t op,
const int32_t* inp,
size_t R,
size_t C,
size_t ld,
std::string name);
namespace {
inst_set_t g_forced_isa = inst_set_t::anyarch;
bool g_Avx512_Ymm_enabled = false;
inst_set_t fbgemmEnvGetIsa() {
static const char* isa_env = "FBGEMM_ENABLE_INSTRUCTIONS";
static const std::unordered_map<std::string, inst_set_t> isaMap = {
{"AVX2", inst_set_t::avx2},
{"AVX512", inst_set_t::avx512},
{"AVX512_E1", inst_set_t::avx512_vnni},
{"AVX512_256", inst_set_t::avx512_ymm},
{"AVX512_E1_256", inst_set_t::avx512_vnni_ymm},
};
const char* env = std::getenv(isa_env);
if (env == nullptr) {
return inst_set_t::anyarch;
}
std::string val(env);
std::transform(val.begin(), val.end(), val.begin(), ::toupper);
auto it = isaMap.find(val);
return it == isaMap.end() ? inst_set_t::anyarch : it->second;
}
bool fbgemmEnvAvx512_256Enabled() {
static const char* isa_env = "FBGEMM_ENABLE_AVX512_256";
const char* env = std::getenv(isa_env);
if (env == nullptr) {
return false;
}
std::string val(env);
std::transform(val.begin(), val.end(), val.begin(), ::tolower);
return val == "true" || val == "1";
}
// This is require for build by older compilers GCC 5.4 and C++11
struct inst_set_t_hash {
std::size_t operator()(inst_set_t t) const {
return static_cast<std::size_t>(t);
}
};
std::unordered_map<
inst_set_t,
std::unordered_set<inst_set_t, inst_set_t_hash>,
inst_set_t_hash>
isaSupportMap = {
{inst_set_t::anyarch, {inst_set_t::anyarch}},
{inst_set_t::avx2, {inst_set_t::avx2, inst_set_t::anyarch}},
{inst_set_t::avx512,
{inst_set_t::avx512, inst_set_t::avx512_ymm, inst_set_t::avx2}},
{inst_set_t::avx512_ymm,
{inst_set_t::avx512, inst_set_t::avx512_ymm, inst_set_t::avx2}},
{inst_set_t::avx512_vnni,
{inst_set_t::avx512_vnni,
inst_set_t::avx512_vnni_ymm,
inst_set_t::avx512,
inst_set_t::avx512_ymm,
inst_set_t::avx2}},
{inst_set_t::avx512_vnni_ymm,
{inst_set_t::avx512_vnni,
inst_set_t::avx512_vnni_ymm,
inst_set_t::avx512,
inst_set_t::avx512_ymm,
inst_set_t::avx2}},
};
} // namespace
/**
* @brief Force specific architecure to for GEMM kernel execution
* overides FBGEMM_ENABLE_AVX512_256 env. variable
* @param isa the ISA to enforce, supported optionsi
* AVX2 inst_set_t::avx2
* AVX512 inst_set_t::avx512
* AVX512_E1 inst_set_t::avx512_vnni
* AVX512_256 inst_set_t::avx512_ymm
* AVX512_E1_256 inst_set_t::avx512_vnni_ymm
*/
void fbgemmForceIsa(inst_set_t isa) {
g_forced_isa = isa;
};
/**
* @brief Enables AVX512-256 if appriate. Inteded for Skylake based Xeon-D
* processors, wherein AXV512-256 is preferred due to higher
* Turbo frequencis
* @param flag True enables / False disables
*/
void fbgemmEnableAvx512Ymm(bool flag) {
g_Avx512_Ymm_enabled = flag;
};
/**
* @brief Determine the best available x86 machine ISA to be used for
* GEMM kernels.
* FBGEMM_ENABLE_AVX512_256 env. or fbgemmForceIsa() are set
* forces to specific architecture if supported by the processor.
* Enforcing on Skylake to AVX2 will execute AVX2 version of the kernel
* However, enforcing AVX512-256 on Broadwell will fail, and AVX2 version
* of the kernels will be executed.
*/
inst_set_t fbgemmInstructionSet() {
static const inst_set_t env_forced_isa = fbgemmEnvGetIsa();
static const bool isAvx512_Ymm_enabled = fbgemmEnvAvx512_256Enabled();
inst_set_t forced_isa =
g_forced_isa != inst_set_t::anyarch ? g_forced_isa : env_forced_isa;
static const inst_set_t detected_isa = ([]() {
inst_set_t detected_isa = inst_set_t::anyarch;
// Check environment
if (cpuinfo_initialize()) {
const bool isXeonD =
fbgemmIsIntelXeonD() && (g_Avx512_Ymm_enabled || isAvx512_Ymm_enabled);
if (fbgemmHasAvx512VnniSupport()) {
if (isXeonD) {
detected_isa = inst_set_t::avx512_vnni_ymm;
} else {
detected_isa = inst_set_t::avx512_vnni;
}
} else if (auto const hasAVX512 = fbgemmHasAvx512Support()) {
if (isXeonD) {
detected_isa = inst_set_t::avx512_ymm;
} else {
detected_isa = inst_set_t::avx512;
}
} else if (fbgemmHasAvx2Support()) {
detected_isa = inst_set_t::avx2;
}
}
return detected_isa;
})();
if (forced_isa == inst_set_t::anyarch) {
return detected_isa;
}
const auto supported_isa = isaSupportMap.find(detected_isa);
assert(
supported_isa != isaSupportMap.end() &&
"Detected ISA can't be located in Supported ISA map");
if (supported_isa == isaSupportMap.end()) {
return detected_isa;
}
return supported_isa->second.count(forced_isa) ? forced_isa : detected_isa;
}
bool isZmm(inst_set_t isa) {
return isa == inst_set_t::avx512 || isa == inst_set_t::avx512_vnni;
}
bool isYmm(inst_set_t isa) {
return isa == inst_set_t::avx512_ymm ||
isa == inst_set_t::avx512_vnni_ymm ||
isa == inst_set_t::avx2;
}
bool fbgemmIsIntelXeonD() {
auto const pkgInfo = cpuinfo_get_packages();
if (strstr(pkgInfo->name, "Intel Xeon D-") ||
cpuinfo_get_packages_count() == 1) {
return true;
}
return false;
}
bool fbgemmHasAvx512Support() {
return (
cpuinfo_has_x86_avx512f() && cpuinfo_has_x86_avx512bw() &&
cpuinfo_has_x86_avx512dq() && cpuinfo_has_x86_avx512vl());
}
bool fbgemmHasAvx2Support() {
return (cpuinfo_has_x86_avx2());
}
bool fbgemmHasAvx512VnniSupport() {
return (cpuinfo_has_x86_avx512vnni());
}
void fbgemmPartition1D(
int thread_id,
int num_threads,
int total_work,
int& start,
int& end) {
// if num_threads == 0,
// this threads should not perform any work
if (num_threads == 0) {
start = end = 0;
return;
}
int work_per_thread = (total_work + num_threads - 1) / num_threads;
start = std::min(thread_id * work_per_thread, total_work);
end = std::min((thread_id + 1) * work_per_thread, total_work);
}
void fbgemmPartition1DBlocked(
int thread_id,
int num_threads,
int total_work,
int block_size,
int& start,
int& end) {
if (block_size == 1) {
return fbgemmPartition1D(thread_id, num_threads, total_work, start, end);
}
int total_work_in_blocks = total_work / block_size;
int start_block, end_block;
fbgemmPartition1D(
thread_id, num_threads, total_work_in_blocks, start_block, end_block);
start = std::min(start_block * block_size, total_work);
end = thread_id == num_threads - 1
? std::max(end_block * block_size, total_work)
: std::min(end_block * block_size, total_work);
}
void* fbgemmAlignedAlloc(
size_t align,
size_t size,
bool raiseException /*=false*/) {
void* aligned_mem = nullptr;
int ret;
#ifdef _MSC_VER
aligned_mem = _aligned_malloc(size, align);
ret = 0;
#else
ret = posix_memalign(&aligned_mem, align, size);
#endif
// Throw std::bad_alloc in the case of memory allocation failure.
if (raiseException || ret || aligned_mem == nullptr) {
throw std::bad_alloc();
}
return aligned_mem;
}
void fbgemmAlignedFree(void* p) {
#ifdef _MSC_VER
_aligned_free(p);
#else
free(p);
#endif
}
int fbgemmGet2DPartition(
int m,
int n,
int nthreads,
int n_align,
double aspect_ratio) {
// mb: number of thread blocks within a socket along m.
// nb: number of thread blocks along n.
// mb * nb = nthreads.
// bm: number of rows assigned per thread block (bm = ceil(m/mb)).
// bn: number of cols assigned per thread block (bn = ceil(n/nb)).
// find mb and nb such that bm / bn is as close as possible to aspect_ratio.
// for large thread numbers, we would like to reduce the aspect_ratio ---
// if the matrix is short-and-fat
// this allows us to assign more parallelism to i-dimension
if (nthreads > 16 && m/n < 0.2) {
aspect_ratio = 0.2;
}
int mb = 1;
int nb = nthreads / mb;
int bm = (m + mb - 1) / mb;
int bn = ((n + n_align - 1) / n_align + nb - 1) / nb * n_align;
double best_delta = std::abs(static_cast<double>(bm) / bn - aspect_ratio);
for (int mb_candidate = 2; mb_candidate <= nthreads; mb_candidate++) {
// mb does not need to divide nthreads
// here nthreads % mb_candidate!=0 constraint is removed for nthreads>16
if (nthreads % mb_candidate != 0 && nthreads <= 16) {
continue;
}
int nb_candidate = nthreads / mb_candidate;
int bm_candidate = (m + mb_candidate - 1) / mb_candidate;
int bn_candidate = ((n + n_align - 1) / n_align + nb_candidate - 1) /
nb_candidate * n_align;
double delta = std::abs(
static_cast<double>(bm_candidate) / bn_candidate - aspect_ratio);
if (delta < best_delta) {
best_delta = delta;
mb = mb_candidate;
} else {
break;
}
}
return mb;
}
thread_type_t fbgemmGetThreadPartition(
int g,
int m,
int n,
int thread_id,
int num_threads,
int n_align) {
assert(num_threads >= 1);
// Fast path for the single thread case.
if (num_threads == 1) {
return thread_type_t{1, 1, 1, 0, 0, 0};
}
thread_type_t th_info;
// Heuristic for determine the thread partitions for parallelizing across g, m
// or n dimensions.
// TODO: more smart ways for thread partitions considering the
// grain size (MR, NR) parameters
if (g > num_threads) {
// TODO: when G == nthreads + 1, we'll have a big load imbalance because
// only one thread will get 2 groups.
th_info.g_num_threads = num_threads;
} else {
if (g != 0 && num_threads % g == 0) {
th_info.g_num_threads = g;
} else {
th_info.g_num_threads = 1;
}
}
num_threads /= th_info.g_num_threads;
// We favor the parallelization on the m dimension compared to the n
// dimension, so we set aspect_ratio to 0.5 here.
th_info.m_num_threads = fbgemmGet2DPartition(m, n, num_threads, n_align, 0.5);
//when num_threads >16, m_num_threads may not divide num_threads
if (num_threads <= 16) {
assert(num_threads % (th_info.m_num_threads) == 0);
}
th_info.n_num_threads = num_threads / th_info.m_num_threads;
// When there are 12 threads (num_threads = 12) and g_nthreads = 2, m_nthreads
// = 2, the threads will be organized as the following 2x2x3 layout (thread is
// partitioned in the last-dim index (i.e., n, m, g, row-major for 2D) major
// order):
//
// thread 0, thread 1, thread 2 thread 6, thread 7, thread 8
// thread 3, thread 4, thread 5 thread 9, thread 10, thread 11
//
// And the corresponding (g_thread_id, m_thread_id, n_thread_id) for
// each thread is listed as the following:
//
// (0, 0, 0), (0, 0, 1), (0, 0, 2) (1, 0, 0), (1, 0, 1), (1, 0, 2)
// (0, 1, 0), (0, 1, 1), (0, 1, 2) (1, 1, 0), (1, 1, 1), (1, 1, 2)
// thread can be inactive,
// meaning they are launched, but will not be assigned any work
if (thread_id >= th_info.g_num_threads*th_info.m_num_threads*th_info.n_num_threads) {
th_info.m_thread_id = 0;
th_info.n_thread_id = 0;
th_info.g_thread_id = 0;
th_info.m_num_threads = 0;
th_info.n_num_threads = 0;
th_info.g_num_threads = 0;
return th_info;
}
// We can view the thread as the ternary with 3-dim base: {g,m,n}_num_threads.
th_info.n_thread_id = thread_id % th_info.n_num_threads;
thread_id /= th_info.n_num_threads;
th_info.m_thread_id = thread_id % th_info.m_num_threads;
thread_id /= th_info.m_num_threads;
th_info.g_thread_id = thread_id % th_info.g_num_threads;
return th_info;
}
} // namespace fbgemm