forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PackAWithIm2Col.cc
755 lines (703 loc) · 27.9 KB
/
PackAWithIm2Col.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include <cpuinfo.h>
#include <algorithm>
#include <cassert>
#include <iomanip>
#include <iostream>
#include <numeric>
#include "./OptimizedKernelsAvx2.h"
#include "fbgemm/Fbgemm.h"
namespace fbgemm {
template <typename T, typename accT, int SPATIAL_DIM>
PackAWithIm2Col<T, accT, SPATIAL_DIM>::PackAWithIm2Col(
const conv_param_t<SPATIAL_DIM>& conv_p,
const T* sdata,
inpType* pmat,
int32_t a_zero_pt,
int32_t* row_offset,
bool b_symmetric,
const BlockingFactors* params)
: PackMatrix<PackAWithIm2Col<T, accT, SPATIAL_DIM>, T, accT>(
conv_p.MB *
std::accumulate(
conv_p.OUT_DIM.begin(),
conv_p.OUT_DIM.end(),
1,
std::multiplies<int>()),
std::accumulate(
conv_p.K.begin(),
conv_p.K.end(),
1,
std::multiplies<int>()) *
conv_p.IC,
pmat,
conv_p.G,
params),
conv_p_(conv_p),
sdata_(sdata),
a_zero_pt_(a_zero_pt) {
if (!cpuinfo_initialize()) {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
if ((!fbgemmHasAvx512VnniSupport() && !fbgemmHasAvx512Support() &&
!fbgemmHasAvx2Support())) {
assert(0 && "unknown architecure");
}
if (params) {
BaseType::brow_ = params->MCB;
BaseType::bcol_ = params->KCB;
row_interleave_B_ = params->ROW_INTERLEAVE;
} else {
const inst_set_t isa = fbgemmInstructionSet();
switch (isa) {
case inst_set_t::avx512_vnni:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_B_) =
PackingTraits<T, accT, inst_set_t::avx512_vnni>::
getMatrixPackAParams();
break;
case inst_set_t::avx512_vnni_ymm:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_B_) =
PackingTraits<T, accT, inst_set_t::avx512_vnni_ymm>::
getMatrixPackAParams();
break;
case inst_set_t::avx512:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_B_) =
PackingTraits<T, accT, inst_set_t::avx512>::getMatrixPackAParams();
break;
case inst_set_t::avx512_ymm:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_B_) =
PackingTraits<T, accT, inst_set_t::avx512_ymm>::
getMatrixPackAParams();
break;
case inst_set_t::avx2:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_B_) =
PackingTraits<T, accT, inst_set_t::avx2>::getMatrixPackAParams();
break;
default:
assert(0 && "unknown architecure");
throw std::runtime_error("unknown architecure");
}
}
if (BaseType::numCols() % conv_p.G != 0) {
throw std::runtime_error(
"groups = " + std::to_string(conv_p.G) +
" does not divide numCols = " + std::to_string(BaseType::numCols()));
}
if (pmat) {
BaseType::buf_ = pmat;
} else {
BaseType::bufAllocatedHere_ = true;
BaseType::buf_ = static_cast<T*>(
fbgemmAlignedAlloc(64, BaseType::brow_ * BaseType::bcol_ * sizeof(T)));
// aligned_alloc(64, BaseType::brow_ * BaseType::bcol_ * sizeof(T)));
}
if (!b_symmetric) {
if (row_offset) {
rowOffsetAllocatedHere = false;
row_offset_ = row_offset;
} else {
rowOffsetAllocatedHere = true;
row_offset_ = static_cast<int32_t*>(
fbgemmAlignedAlloc(64, BaseType::brow_ * sizeof(int32_t)));
}
}
}
template <int SPATIAL_DIM, int BCOL>
void pack_a_with_im2col_opt(
const conv_param_t<SPATIAL_DIM>& conv_p,
const block_type_t& block,
const uint8_t* sdata,
uint8_t* out,
int32_t a_zero_pt,
int32_t* row_offset_buf,
int COL_SIZE,
int COL_P_SIZE,
bool row_offset_acc) {
constexpr int IC = 3;
int IN_DIM_H = conv_p.IN_DIM[0];
int IN_DIM_W = conv_p.IN_DIM[1];
int K_H = conv_p.K[0];
int K_W = conv_p.K[1];
constexpr int STRIDE_H = 2;
constexpr int STRIDE_W = 2;
int PAD_H = conv_p.pad[0];
int PAD_W = conv_p.pad[1];
int OUT_DIM_H = conv_p.OUT_DIM[0];
int OUT_DIM_W = conv_p.OUT_DIM[1];
int OUT_DIM_HW = OUT_DIM_H * OUT_DIM_W;
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
int n = i / OUT_DIM_HW;
int hw = i % OUT_DIM_HW;
int w = hw % OUT_DIM_W;
int h = hw / OUT_DIM_W;
// j refers to column index within block
int j = 0;
// r and s iterate over K_H and K_W, respectively
for (int r = 0; r < K_H; ++r) {
int h_in = -PAD_H + h * STRIDE_H + r;
if (h_in < 0 || h_in >= IN_DIM_H) {
// Short-circuit if h_in is in padding.
std::memset(
out + (i - block.row_start) * BCOL + j,
a_zero_pt,
sizeof(uint8_t) * K_W * IC);
j += K_W * IC;
continue;
}
int s = 0;
// left_pad_len : the number of spatial pixels we need to pad at the
// beginning
int left_pad_len = PAD_W - w * STRIDE_W;
if (left_pad_len > 0) {
std::memset(
out + (i - block.row_start) * BCOL + j,
a_zero_pt,
sizeof(uint8_t) * left_pad_len * IC);
s += left_pad_len;
}
// mid_len : the number of spatial pixels that we handle normally
// (no padding)
int mid_len = std::min(IN_DIM_W + PAD_W - w * STRIDE_W, K_W) - s;
std::memcpy(
out + (i - block.row_start) * BCOL + j + s * IC,
sdata +
((n * IN_DIM_H + h_in) * IN_DIM_W + -PAD_W + w * STRIDE_W + s) *
IC,
sizeof(uint8_t) * mid_len * IC);
s += mid_len;
// right_pad_len : the number of spatial pixels we need to pad at the end
int right_pad_len = K_W - s;
if (right_pad_len > 0) {
std::memset(
out + (i - block.row_start) * BCOL + j + s * IC,
a_zero_pt,
sizeof(uint8_t) * right_pad_len * IC);
}
j += K_W * IC;
} // r loop
// zero fill
// Please see the comment in PackAMatrix.cc for zero vs zero_pt fill.
if (COL_P_SIZE - COL_SIZE > 0) {
std::memset(
&out[(i - block.row_start) * BCOL + COL_SIZE],
0,
sizeof(uint8_t) * COL_P_SIZE - COL_SIZE);
}
if (row_offset_buf) {
int32_t row_sum =
row_offset_acc ? row_offset_buf[i - block.row_start] : 0;
row_sum += reduceAvx2(out + (i - block.row_start) * BCOL, COL_SIZE);
row_offset_buf[i - block.row_start] = row_sum;
}
}
}
template <typename T, typename accT, int SPATIAL_DIM>
void PackAWithIm2Col<T, accT, SPATIAL_DIM>::pack(const block_type_t& block) {
block_type_t block_p = {
block.row_start,
block.row_size,
block.col_start,
(block.col_size + row_interleave_B_ - 1) / row_interleave_B_ *
row_interleave_B_};
BaseType::packedBlock(block_p);
T* out = BaseType::getBuf();
// accumulate into row offset?
bool row_offset_acc =
(block.col_start % (this->numCols() / this->numGroups())) != 0;
int32_t* row_offset_buf = getRowOffsetBuffer();
bool point_wise = true;
for (int d = 0; d < SPATIAL_DIM; ++d) {
if (conv_p_.K[d] != 1 || conv_p_.pad[d] != 0 || conv_p_.stride[d] != 1 ||
conv_p_.dilation[d] != 1) {
point_wise = false;
break;
}
}
for (int d = SPATIAL_DIM; d < SPATIAL_DIM * 2; ++d) {
if (conv_p_.pad[d] != 0) {
point_wise = false;
break;
}
}
// reduceAvx2 only written for T == uint8_t
static_assert(
std::is_same<T, uint8_t>::value,
"PackAWithIm2Col<T, accT>::pack only works for T == uint8_t");
if (point_wise) {
int32_t ld = this->numCols();
if (row_offset_buf) {
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
int buf_idx = i - block.row_start;
memcpy(
out + buf_idx * BaseType::blockColSize(),
sdata_ + i * ld + block.col_start,
block.col_size * sizeof(T));
// zero fill
for (int j = block.col_size; j < block_p.col_size; ++j) {
out[buf_idx * BaseType::blockColSize() + j] = 0;
}
int32_t row_sum =
row_offset_acc ? row_offset_buf[i - block.row_start] : 0;
row_sum +=
reduceAvx2(sdata_ + i * ld + block.col_start, block.col_size);
row_offset_buf[i - block.row_start] = row_sum;
}
} else {
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
int buf_idx = i - block.row_start;
memcpy(
out + buf_idx * BaseType::blockColSize(),
sdata_ + i * ld + block.col_start,
block.col_size * sizeof(T));
// zero fill
for (int j = block.col_size; j < block_p.col_size; ++j) {
out[buf_idx * BaseType::blockColSize() + j] = 0;
}
}
}
return;
}
int ic_per_group = conv_p_.IC / conv_p_.G;
if (!conv_p_.transposed && SPATIAL_DIM == 2 && conv_p_.IC == 3 &&
conv_p_.G == 1 && conv_p_.stride[0] == 2 && conv_p_.stride[1] == 2 &&
block.col_start == 0 && conv_p_.pad[0] == ((conv_p_.K[0] - 1) / 2) &&
conv_p_.pad[1] == ((conv_p_.K[1] - 1) / 2) &&
block_p.col_size <= BaseType::blockColSize() &&
conv_p_.dilation[0] == 1 && conv_p_.dilation[1] == 1 &&
std::is_same<T, uint8_t>::value) {
if (BaseType::blockColSize() == 256) {
pack_a_with_im2col_opt<SPATIAL_DIM, 256>(
conv_p_,
block,
reinterpret_cast<const uint8_t*>(sdata_),
reinterpret_cast<uint8_t*>(out),
a_zero_pt_,
row_offset_buf,
block.col_size,
block_p.col_size,
row_offset_acc);
return;
} else if (BaseType::blockColSize() == 512) {
pack_a_with_im2col_opt<SPATIAL_DIM, 512>(
conv_p_,
block,
reinterpret_cast<const uint8_t*>(sdata_),
reinterpret_cast<uint8_t*>(out),
a_zero_pt_,
row_offset_buf,
block.col_size,
block_p.col_size,
row_offset_acc);
return;
}
}
if (conv_p_.transposed) {
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
if (SPATIAL_DIM == 1) { // static if
int n = i / (conv_p_.OUT_DIM[0]);
int ow = i % (conv_p_.OUT_DIM[0]);
for (int j = block.col_start;
j < block.col_start + block.col_size + ic_per_group - 1;
j += ic_per_group) {
int j_blk_id = j / ic_per_group;
// max( j_blk_id * IC, START) -> min( END, (j_blk_id + 1) * IC )
int j_blk_start = std::max(j_blk_id * ic_per_group, block.col_start);
int j_blk_end = std::min(
(j_blk_id + 1) * ic_per_group, block.col_start + block.col_size);
if (j_blk_start >= j_blk_end) {
break;
}
int grs = j / ic_per_group;
int s = grs % conv_p_.K[0];
int g = grs / conv_p_.K[0];
int w = ow + conv_p_.pad[0] - s * conv_p_.dilation[0];
int w_in = w / conv_p_.stride[0];
if (w_in * conv_p_.stride[0] == w && w_in >= 0 &&
w_in < conv_p_.IN_DIM[0]) {
std::memcpy(
out + (i - block.row_start) * BaseType::blockColSize() +
j_blk_start - block.col_start,
sdata_ + (n * conv_p_.IN_DIM[0] + w_in) * conv_p_.IC +
g * ic_per_group + (j_blk_start % ic_per_group),
sizeof(T) * (j_blk_end - j_blk_start));
} else {
// Please note that padding for convolution should be filled with
// zero_pt
std::memset(
out + (i - block.row_start) * BaseType::blockColSize() +
(j_blk_start - block.col_start),
a_zero_pt_,
sizeof(T) * (j_blk_end - j_blk_start));
}
}
} else if (SPATIAL_DIM == 2) { // static if
int n = i / (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1]);
int hw = i % (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1]);
int ow = hw % conv_p_.OUT_DIM[1];
int oh = hw / conv_p_.OUT_DIM[1];
for (int j = block.col_start;
j < block.col_start + block.col_size + ic_per_group - 1;
j += ic_per_group) {
int j_blk_id = j / ic_per_group;
// max( j_blk_id * IC, START) -> min( END, (j_blk_id + 1) * IC )
int j_blk_start = std::max(j_blk_id * ic_per_group, block.col_start);
int j_blk_end = std::min(
(j_blk_id + 1) * ic_per_group, block.col_start + block.col_size);
if (j_blk_start >= j_blk_end) {
break;
}
int grs = j / ic_per_group;
int s = grs % conv_p_.K[1];
int r = grs / conv_p_.K[1] % conv_p_.K[0];
int g = grs / conv_p_.K[1] / conv_p_.K[0];
int h = oh + conv_p_.pad[0] - r * conv_p_.dilation[0];
int w = ow + conv_p_.pad[1] - s * conv_p_.dilation[1];
int h_in = h / conv_p_.stride[0];
int w_in = w / conv_p_.stride[1];
if (h_in * conv_p_.stride[0] == h && h_in >= 0 &&
h_in < conv_p_.IN_DIM[0] && w_in * conv_p_.stride[1] == w &&
w_in >= 0 && w_in < conv_p_.IN_DIM[1]) {
std::memcpy(
out + (i - block.row_start) * BaseType::blockColSize() +
j_blk_start - block.col_start,
sdata_ +
((n * conv_p_.IN_DIM[0] + h_in) * conv_p_.IN_DIM[1] +
w_in) *
conv_p_.IC +
g * ic_per_group + (j_blk_start % ic_per_group),
sizeof(T) * (j_blk_end - j_blk_start));
} else {
// Please note that padding for convolution should be filled with
// zero_pt
std::memset(
out + (i - block.row_start) * BaseType::blockColSize() +
(j_blk_start - block.col_start),
a_zero_pt_,
sizeof(T) * (j_blk_end - j_blk_start));
}
}
} else if (SPATIAL_DIM == 3) { // static if
int n =
i / (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1] * conv_p_.OUT_DIM[2]);
int thw =
i % (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1] * conv_p_.OUT_DIM[2]);
int ow = thw % conv_p_.OUT_DIM[2];
int oh = thw / conv_p_.OUT_DIM[2] % conv_p_.OUT_DIM[1];
int ot = thw / conv_p_.OUT_DIM[2] / conv_p_.OUT_DIM[1];
for (int j = block.col_start;
j < block.col_start + block.col_size + ic_per_group - 1;
j += ic_per_group) {
int j_blk_id = j / ic_per_group;
// max( j_blk_id * IC, START) -> min( END, (j_blk_id + 1) * IC )
int j_blk_start = std::max(j_blk_id * ic_per_group, block.col_start);
int j_blk_end = std::min(
(j_blk_id + 1) * ic_per_group, block.col_start + block.col_size);
if (j_blk_start >= j_blk_end) {
break;
}
int gqrs = j / ic_per_group;
int s = gqrs % conv_p_.K[2];
int r = gqrs / conv_p_.K[2] % conv_p_.K[1];
int q = gqrs / conv_p_.K[2] / conv_p_.K[1] % conv_p_.K[0];
int g = gqrs / conv_p_.K[2] / conv_p_.K[1] / conv_p_.K[0];
int t = ot + conv_p_.pad[0] - q * conv_p_.dilation[0];
int h = oh + conv_p_.pad[1] - r * conv_p_.dilation[1];
int w = ow + conv_p_.pad[2] - s * conv_p_.dilation[2];
int t_in = t / conv_p_.stride[0];
int h_in = h / conv_p_.stride[1];
int w_in = w / conv_p_.stride[2];
if (t_in * conv_p_.stride[0] == t && t_in >= 0 &&
t_in < conv_p_.IN_DIM[0] && h_in * conv_p_.stride[1] == h &&
h_in >= 0 && h_in < conv_p_.IN_DIM[1] &&
w_in * conv_p_.stride[2] == w && w_in >= 0 &&
w_in < conv_p_.IN_DIM[2]) {
std::memcpy(
out + (i - block.row_start) * BaseType::blockColSize() +
j_blk_start - block.col_start,
sdata_ +
(((n * conv_p_.IN_DIM[0] + t_in) * conv_p_.IN_DIM[1] +
h_in) *
conv_p_.IN_DIM[2] +
w_in) *
conv_p_.IC +
g * ic_per_group + (j_blk_start % ic_per_group),
sizeof(T) * (j_blk_end - j_blk_start));
} else {
// Please note that padding for convolution should be filled with
// zero_pt
std::memset(
&out
[(i - block.row_start) * BaseType::blockColSize() +
(j_blk_start - block.col_start)],
a_zero_pt_,
sizeof(T) * (j_blk_end - j_blk_start));
}
}
}
// zero fill
// Please see the comment in PackAMatrix.cc for zero vs zero_pt fill.
if ((block_p.col_start + block_p.col_size) -
(block.col_start + block.col_size) >
0) {
std::memset(
&out
[(i - block.row_start) * BaseType::blockColSize() +
(block.col_size)],
0,
sizeof(T) *
((block_p.col_start + block_p.col_size) -
(block.col_start + block.col_size)));
}
if (row_offset_buf) {
int32_t row_sum =
row_offset_acc ? row_offset_buf[i - block.row_start] : 0;
row_sum += reduceAvx2(
out + (i - block.row_start) * this->blockColSize(), block.col_size);
row_offset_buf[i - block.row_start] = row_sum;
}
} // for each i
} else {
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
if (SPATIAL_DIM == 1) { // static if
int n = i / (conv_p_.OUT_DIM[0]);
int w = i % (conv_p_.OUT_DIM[0]);
for (int j = block.col_start;
j < block.col_start + block.col_size + ic_per_group - 1;
j += ic_per_group) {
int j_blk_id = j / ic_per_group;
// max( j_blk_id * IC, START) -> min( END, (j_blk_id + 1) * IC )
int j_blk_start = std::max(j_blk_id * ic_per_group, block.col_start);
int j_blk_end = std::min(
(j_blk_id + 1) * ic_per_group, block.col_start + block.col_size);
if (j_blk_start >= j_blk_end) {
break;
}
int grs = j / ic_per_group;
int s = grs % conv_p_.K[0];
int g = grs / conv_p_.K[0];
int w_in =
-conv_p_.pad[0] + w * conv_p_.stride[0] + s * conv_p_.dilation[0];
if (w_in < 0 || w_in >= conv_p_.IN_DIM[0]) {
// Please note that padding for convolution should be filled with
// zero_pt
std::memset(
out + (i - block.row_start) * BaseType::blockColSize() +
(j_blk_start - block.col_start),
a_zero_pt_,
sizeof(T) * (j_blk_end - j_blk_start));
} else {
std::memcpy(
out + (i - block.row_start) * BaseType::blockColSize() +
j_blk_start - block.col_start,
sdata_ + (n * conv_p_.IN_DIM[0] + w_in) * conv_p_.IC +
g * ic_per_group + (j_blk_start % ic_per_group),
sizeof(T) * (j_blk_end - j_blk_start));
}
}
} else if (SPATIAL_DIM == 2) { // static if
int n = i / (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1]);
int hw = i % (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1]);
int w = hw % conv_p_.OUT_DIM[1];
int h = hw / conv_p_.OUT_DIM[1];
for (int j = block.col_start;
j < block.col_start + block.col_size + ic_per_group - 1;
j += ic_per_group) {
int j_blk_id = j / ic_per_group;
// max( j_blk_id * IC, START) -> min( END, (j_blk_id + 1) * IC )
int j_blk_start = std::max(j_blk_id * ic_per_group, block.col_start);
int j_blk_end = std::min(
(j_blk_id + 1) * ic_per_group, block.col_start + block.col_size);
if (j_blk_start >= j_blk_end) {
break;
}
int grs = j / ic_per_group;
int s = grs % conv_p_.K[1];
int r = grs / conv_p_.K[1] % conv_p_.K[0];
int g = grs / conv_p_.K[1] / conv_p_.K[0];
int h_in =
-conv_p_.pad[0] + h * conv_p_.stride[0] + r * conv_p_.dilation[0];
int w_in =
-conv_p_.pad[1] + w * conv_p_.stride[1] + s * conv_p_.dilation[1];
if (h_in < 0 || h_in >= conv_p_.IN_DIM[0] || w_in < 0 ||
w_in >= conv_p_.IN_DIM[1]) {
// Please note that padding for convolution should be filled with
// zero_pt
std::memset(
out + (i - block.row_start) * BaseType::blockColSize() +
(j_blk_start - block.col_start),
a_zero_pt_,
sizeof(T) * (j_blk_end - j_blk_start));
} else {
int chn_start_idx = j_blk_start % ic_per_group;
int src_offset =
((n * conv_p_.IN_DIM[0] + h_in) * conv_p_.IN_DIM[1] + w_in) *
conv_p_.IC +
g * ic_per_group + chn_start_idx;
// fast path
// Copy across pixels of input width if we can. We can only do this
// if the following conditions are met. 1) If the number of groups
// is 1. For number of groups > 1, im2col
// doesn't copy data across groups.
// 2) If dilation is 1. For dilation > 1, copying from input
// across channels is not sequential.
// 3) For copy from the last channel (end of filter or
// end of image width) for the current filter,
// only copy if we have enough in the current channel.
//
if (conv_p_.G == 1 && conv_p_.dilation[1] == 1 &&
((s < (conv_p_.K[1] - 1) && w_in < (conv_p_.IN_DIM[1] - 1)) ||
((chn_start_idx + block.col_size) <= ic_per_group))) {
// left edge adjustment with s
j_blk_end = std::min(
(j_blk_id + conv_p_.K[1] - s) * ic_per_group,
block.col_start + block.col_size);
// right edge adjustment with w_in
j_blk_end = std::min(
(j_blk_id + conv_p_.IN_DIM[1] - w_in) * ic_per_group,
j_blk_end);
j += j_blk_end - j_blk_start - ic_per_group;
}
std::memcpy(
out + (i - block.row_start) * BaseType::blockColSize() +
j_blk_start - block.col_start,
sdata_ + src_offset,
sizeof(T) * (j_blk_end - j_blk_start));
}
}
} else if (SPATIAL_DIM == 3) { // static if
int n =
i / (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1] * conv_p_.OUT_DIM[2]);
int thw =
i % (conv_p_.OUT_DIM[0] * conv_p_.OUT_DIM[1] * conv_p_.OUT_DIM[2]);
int w = thw % conv_p_.OUT_DIM[2];
int h = thw / conv_p_.OUT_DIM[2] % conv_p_.OUT_DIM[1];
int t = thw / conv_p_.OUT_DIM[2] / conv_p_.OUT_DIM[1];
for (int j = block.col_start;
j < block.col_start + block.col_size + ic_per_group - 1;
j += ic_per_group) {
int j_blk_id = j / ic_per_group;
// max( j_blk_id * IC, START) -> min( END, (j_blk_id + 1) * IC )
int j_blk_start = std::max(j_blk_id * ic_per_group, block.col_start);
int j_blk_end = std::min(
(j_blk_id + 1) * ic_per_group, block.col_start + block.col_size);
if (j_blk_start >= j_blk_end) {
break;
}
int gqrs = j / ic_per_group;
int s = gqrs % conv_p_.K[2];
int r = gqrs / conv_p_.K[2] % conv_p_.K[1];
int q = gqrs / conv_p_.K[2] / conv_p_.K[1] % conv_p_.K[0];
int g = gqrs / conv_p_.K[2] / conv_p_.K[1] / conv_p_.K[0];
int t_in =
-conv_p_.pad[0] + t * conv_p_.stride[0] + q * conv_p_.dilation[0];
int h_in =
-conv_p_.pad[1] + h * conv_p_.stride[1] + r * conv_p_.dilation[1];
int w_in =
-conv_p_.pad[2] + w * conv_p_.stride[2] + s * conv_p_.dilation[2];
if (t_in < 0 || t_in >= conv_p_.IN_DIM[0] || h_in < 0 ||
h_in >= conv_p_.IN_DIM[1] || w_in < 0 ||
w_in >= conv_p_.IN_DIM[2]) {
// Please note that padding for convolution should be filled with
// zero_pt
std::memset(
&out
[(i - block.row_start) * BaseType::blockColSize() +
(j_blk_start - block.col_start)],
a_zero_pt_,
sizeof(T) * (j_blk_end - j_blk_start));
} else {
std::memcpy(
out + (i - block.row_start) * BaseType::blockColSize() +
j_blk_start - block.col_start,
sdata_ +
(((n * conv_p_.IN_DIM[0] + t_in) * conv_p_.IN_DIM[1] +
h_in) *
conv_p_.IN_DIM[2] +
w_in) *
conv_p_.IC +
g * ic_per_group + (j_blk_start % ic_per_group),
sizeof(T) * (j_blk_end - j_blk_start));
}
}
}
// zero fill
// Please see the comment in PackAMatrix.cc for zero vs zero_pt fill.
if ((block_p.col_start + block_p.col_size) -
(block.col_start + block.col_size) >
0) {
std::memset(
&out
[(i - block.row_start) * BaseType::blockColSize() +
(block.col_size)],
0,
sizeof(T) *
((block_p.col_start + block_p.col_size) -
(block.col_start + block.col_size)));
}
if (row_offset_buf) {
int32_t row_sum =
row_offset_acc ? row_offset_buf[i - block.row_start] : 0;
row_sum += reduceAvx2(
out + (i - block.row_start) * this->blockColSize(), block.col_size);
row_offset_buf[i - block.row_start] = row_sum;
}
} // for each i
}
}
template <typename T, typename accT, int SPATIAL_DIM>
void PackAWithIm2Col<T, accT, SPATIAL_DIM>::printPackedMatrix(
std::string name) {
std::cout << name << ":"
<< "[" << BaseType::numPackedRows() << ", "
<< BaseType::numPackedCols() << "]" << std::endl;
T* out = BaseType::getBuf();
for (auto r = 0; r < BaseType::numPackedRows(); ++r) {
for (auto c = 0; c < BaseType::numPackedCols(); ++c) {
T val = out[r * BaseType::blockColSize() + c];
if (std::is_integral<T>::value) {
// cast to int64 because cout doesn't print int8_t type directly
std::cout << std::setw(5) << static_cast<int64_t>(val) << " ";
} else {
std::cout << std::setw(5) << val << " ";
}
}
std::cout << std::endl;
}
std::cout << std::endl;
}
template <typename T, typename accT, int SPATIAL_DIM>
int PackAWithIm2Col<T, accT, SPATIAL_DIM>::rowOffsetBufferSize(
const BlockingFactors* params) {
if (cpuinfo_initialize()) {
if (params) {
return params->MCB;
} else {
if (fbgemmHasAvx512VnniSupport()) {
return PackingTraits<T, accT, inst_set_t::avx512_vnni>::MCB;
} else if (fbgemmHasAvx512Support()) {
return PackingTraits<T, accT, inst_set_t::avx512>::MCB;
} else if (fbgemmHasAvx2Support()) {
return PackingTraits<T, accT, inst_set_t::avx2>::MCB;
} else {
// TODO: Have default slower path
assert(0 && "unsupported architecture");
return -1;
}
}
} else {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
}
template class PackAWithIm2Col<uint8_t, int32_t, 1>;
template class PackAWithIm2Col<uint8_t, int16_t, 1>;
template class PackAWithIm2Col<uint8_t, int32_t, 2>;
template class PackAWithIm2Col<uint8_t, int16_t, 2>;
template class PackAWithIm2Col<uint8_t, int32_t, 3>;
template class PackAWithIm2Col<uint8_t, int16_t, 3>;
} // namespace fbgemm