forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRefImplementations.h
386 lines (361 loc) · 10.9 KB
/
RefImplementations.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <algorithm>
#include <cstdint>
#include "fbgemm/ConvUtils.h"
#include "fbgemm/FbgemmI8Spmdm.h"
#include "fbgemm/Types.h"
namespace fbgemm {
/**
* @brief Reference implementation of requantization step.
* int32 multiplier
* @param bias can be nullptr
*/
FBGEMM_API void requantize_u8acc32_ref(
int M,
int N,
int ld,
const std::int32_t* inp,
std::uint8_t* out,
std::int32_t C_multiplier,
std::int32_t C_right_shift,
std::int32_t C_zero_point,
std::int32_t A_zero_point,
std::int32_t B_zero_point,
const std::int32_t* row_offsets,
const std::int32_t* col_offsets,
const std::int32_t* bias,
bool fuse_relu = false);
/**
* @brief Reference implementation of requantization step.
* float multiplier
* @param bias can be nullptr
* @param ncols_per_quant_group the number of columns share the same
* quantization parameter.
* ncols_per_quant_group == N : per-tensor quantization
* ncols_per_quant_group == N / groups : per-group quantization
* ncols_per_quant_group == 1 : per-channel quantization
*/
FBGEMM_API void requantize_u8acc32_ref(
int M,
int N,
int ld,
const std::int32_t* inp,
std::uint8_t* out,
const float* C_multiplier,
std::int32_t C_zero_point,
std::int32_t A_zero_point,
const std::int32_t* B_zero_point,
const std::int32_t* row_offsets,
const std::int32_t* col_offsets,
const std::int32_t* bias,
int ncols_per_quant_group,
bool fuse_relu = false);
/**
* @brief Reference implementation of matrix multiply with uint8 for A,
* int8 for B, and 32-bit accumulation.
*/
FBGEMM_API void matmul_u8i8acc32_ref(
int M,
int N,
int K,
int lda,
int ldb,
int ldc,
const std::uint8_t* Aint8,
const std::int8_t* Bint8,
std::int32_t* Cint32);
/**
* @brief Reference implementation of matrix multiply with uint 8 for A,
* int8 for B, and 16-bit accumulation.
*/
FBGEMM_API void matmul_u8i8acc16_ref(
int M,
int N,
int K,
int lda,
int ldb,
int ldc,
int brow,
const std::uint8_t* Aint8,
const std::int8_t* Bint8,
std::int32_t* Cint32);
/**
* @brief Reference implementation of cblas_sgemm in MKL/BLAS.
*/
FBGEMM_API void cblas_sgemm_ref(
const matrix_op_t transa,
const matrix_op_t transb,
const int m,
const int n,
const int k,
float alpha,
const float* Afp32,
int lda,
const float* Bfp32,
int ldb,
float beta,
float* Cfp32,
int ldc);
FBGEMM_API void cblas_gemm_i64_i64acc_ref(
matrix_op_t transa,
matrix_op_t transb,
int M,
int N,
int K,
const std::int64_t* A,
int lda,
const std::int64_t* B,
int ldb,
bool accumulate,
std::int64_t* C,
int ldc);
/**
* @brief Reference implementation to compute row_offsets (sums of rows of A).
*/
FBGEMM_API void row_offsets_u8acc32_ref(
int M,
int K,
int ld,
const std::uint8_t* Aint8,
std::int32_t* row_offsets);
/**
* @brief Reference implementation to compute adjusted col_offsets (sum of
* columns of B and adjusted with B_zero_point)
*
* @param ncols_per_quant_group see ncols_per_quant_group in
* requantize_u8acc32_ref
*/
FBGEMM_API void col_offsets_with_zero_pt_s8acc32_ref(
int K,
int N,
int ld,
const std::int8_t* Bint8,
const std::int32_t* B_zero_point,
std::int32_t* col_offsets,
int ncols_per_quant_group);
/**
* @brief Reference implementation of SPMDM (sparse matrix times dense matrix).
*
* @param groups when > 1, for gth group, we multiply
* A[:,g*(A.ncols/groups):(g+1)*(A.ncols/groups)] sub-matrix with
* B[:,g*(B.ncols/groups):(g+1)*(B.ncols/groups)] sub-matrix .
*/
FBGEMM_API void spmdm_ref(
int M,
const std::uint8_t* A,
int lda,
CompressedSparseColumn& B,
bool accumulation,
std::int32_t* C,
int ldc,
int groups = 1);
/*
* @brief Trim a 32-bit integer to a 16-bit integer.
*/
int32_t clip_16bit(int32_t x);
/*
* @brief Reference implementation of convolution operation.
* The activations A are assumed to be in NHiWiC format.
* The filters B are assumed to be in RSCK format.
* The output C is assumed to be in NHoWoC format.
*/
template <int SPATIAL_DIM = 2>
FBGEMM_API void conv_ref(
const conv_param_t<SPATIAL_DIM>& conv_p,
const std::uint8_t* A,
std::int32_t A_zero_point,
const std::int8_t* B,
std::int32_t* C);
/*
* @brief Transforms weights from G K/G (R S C/G) to G (R S C/G) K/G format.
*/
template <int SPATIAL_DIM = 2>
FBGEMM_API void transposeConvWeights(
const conv_param_t<SPATIAL_DIM>& conv_p,
const std::int8_t* src,
std::int8_t* dest);
/*
* @brief Reference implementation of im2col operation.
*
* For 2D:
* The input A is assumed to be in NHiWiC format.
* The output A is assumed to be in NHoWoRSC format.
*
* For 3D:
* The input A is assumed to be in NTiHiWiC format.
* The output A is assumed to be in NToHoWoK0K1K2C format.
*/
template <int SPATIAL_DIM = 2>
FBGEMM_API void im2col_ref(
const conv_param_t<SPATIAL_DIM>& conv_p,
const std::uint8_t* A,
std::int32_t A_zero_point,
std::uint8_t* Ao);
template <
typename InType = std::uint8_t,
typename IndexType = std::int64_t,
typename OffsetType = std::int32_t,
typename OutType = float>
FBGEMM_API bool EmbeddingSpMDM_ref(
const std::int64_t block_size,
const std::int64_t output_size,
const std::int64_t index_size,
const std::int64_t data_size,
const InType* input,
const IndexType* indices,
const OffsetType* offsets_or_lengths,
const float* weights, // optional, can be null for non-weighted sum
bool normalize_by_lengths,
OutType* out,
bool is_weight_positional = false,
bool use_offsets = true,
std::int64_t output_stride = -1,
std::int64_t input_stride = -1,
bool scale_bias_last = true);
template <
typename IndexType = std::int64_t,
typename OffsetType = std::int32_t,
typename OutType = float>
FBGEMM_API bool EmbeddingSpMDMNBit_ref(
int bit_rate,
const std::int64_t block_size,
const std::int64_t output_size,
const std::int64_t index_size,
const std::int64_t data_size,
const std::uint8_t* input,
const IndexType* indices,
const OffsetType* offsets_or_lengths,
const float* weights, // optional, can be null for non-weighted sum
bool normalize_by_lengths,
OutType* out,
bool is_weight_positional = false,
bool use_offsets = true,
std::int64_t output_stride = -1,
std::int64_t input_stride = -1,
bool scale_bias_last = true);
template <
typename InType = std::uint8_t,
typename IndexType = std::int64_t,
typename OffsetType = std::int32_t>
FBGEMM_API bool EmbeddingSpMDMRowWiseSparse_ref(
const std::int64_t block_size,
const std::int64_t output_size,
const std::int64_t index_size,
const std::int64_t uncompressed_data_size,
// const std::int64_t compressed_data_size,
const InType* input,
const IndexType* indices,
const std::int32_t* compressed_indices_table,
const OffsetType* offsets_or_lengths,
const float* weights, // optional, can be null for non-weighted sum
bool normalize_by_lengths,
float* out,
bool is_weight_positional = false,
bool use_offsets = true);
template <typename IndexType = std::int64_t, typename OffsetType = std::int32_t>
FBGEMM_API bool EmbeddingSpMDMNBitRowWiseSparse_ref(
int bit_rate,
const std::int64_t block_size,
const std::int64_t output_size,
const std::int64_t index_size,
const std::int64_t uncompressed_data_size,
// const std::int64_t compressed_data_size,
const std::uint8_t* input,
const IndexType* indices,
const std::int32_t* compressed_indices_table,
const OffsetType* offsets_or_lengths,
const float* weights, // optional, can be null for non-weighted sum
bool normalize_by_lengths,
float* out,
bool is_weight_positional = false,
bool use_offsets = true);
/**
* @param num_rows number of rows reading
* @param block_size number of parameters per rows
* @param param_size total number of parameters
* @param w input parameters
* @param g input gradients
* @param h input momentum
* @param indices indices of each row
* @param counter used for weight_decay adjusted for frequency. nullptr when
* frequency adjustment is not used. Ignored when weight_decay
* == 0
* @param counter_halflife weight_decay is adjusted only after this number of
* iterations
*/
template <typename IndexType>
FBGEMM_API int sparse_adagrad_ref(
int num_rows,
int block_size,
std::uint64_t param_size,
float* w,
const float* g,
float* h,
const IndexType* indices,
float epsilon,
float lr,
float weight_decay = 0.f,
const double* counter = nullptr,
const int64_t counter_halflife = 0);
/**
* @param num_rows number of rows reading
* @param block_size number of parameters per rows
* @param param_size total number of parameters
* @param w input parameters
* @param g input gradients
* @param h input momentum
* @param indices indices of each row
* @param counter used for weight_decay adjusted for frequency. nullptr when
* frequency adjustment is not used. Ignored when weight_decay
* == 0
* @param counter_halflife weight_decay is adjusted only after this number of
* iterations
*/
template <typename IndexType>
FBGEMM_API int rowwise_sparse_adagrad_ref(
int num_rows,
int block_size,
std::uint64_t param_size,
float* w,
const float* g,
float* h,
const IndexType* indices,
float epsilon,
float lr,
float weight_decay = 0.f,
const double* counter = nullptr,
const int64_t counter_halflife = 0);
template <typename DataType, typename IndexType, typename OffsetType>
FBGEMM_API int rowwise_sparse_adagrad_fused_ref(
std::int64_t block_size,
std::int64_t output_size,
std::int64_t index_size,
std::int64_t data_size,
DataType* w, // input/output parameters
const float* g, // inupt gradients
float* h, // input/output momentums
const IndexType* indices,
const OffsetType* offsets_or_lengths,
float epsilon,
float lr,
bool use_offsets = true,
bool use_stochastic_rounding = true, // For DataType=float16
int emu_vector_size = 8,
std::int64_t grad_stride = -1);
template <typename IndexType>
FBGEMM_API void compressed_indices_remap_ref(
std::int32_t offsets_len,
const IndexType* indices,
const int32_t* compressed_indices_mapping,
const IndexType* offsets,
const float* weights, // optional, can be null,
IndexType* out_indices,
IndexType* out_offsets,
float* out_weights);
} // namespace fbgemm