-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaes.py
399 lines (313 loc) · 15.2 KB
/
aes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Project 1 - COSC483
# Joey Lemon - 09/11/2021
# Non-linear substitution table used in several byte substitution transformations
# and in the Key Expansion routine to perform a one for-one substitution of a byte value.
s_box = (
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
)
inv_s_box = (
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
)
# Round constant word array for usage in the key expansion routine
r_con = (
0x00000000, 0x01000000, 0x02000000, 0x04000000,
0x08000000, 0x10000000, 0x20000000, 0x40000000,
0x80000000, 0x1B000000, 0x36000000, 0x6C000000,
0xD8000000, 0xAB000000, 0x4D000000, 0x9A000000,
0x2F000000, 0x5E000000, 0xBC000000, 0x63000000,
0xC6000000, 0x97000000, 0x35000000, 0x6A000000,
0xD4000000, 0xB3000000, 0x7D000000, 0xFA000000,
0xEF000000, 0xC5000000, 0x91000000, 0x39000000,
0x72000000, 0xE4000000, 0xD3000000, 0xBD000000,
0x61000000, 0xC2000000, 0x9F000000, 0x25000000,
0x4A000000, 0x94000000, 0x33000000, 0x66000000,
0xCC000000, 0x83000000, 0x1D000000, 0x3A000000,
0x74000000, 0xE8000000, 0xCB000000, 0x8D000000
)
# Matrix for fixed polynomial a(x) for use in the mix_columns() function
ax = [[0x02, 0x03, 0x01, 0x01],
[0x01, 0x02, 0x03, 0x01],
[0x01, 0x01, 0x02, 0x03],
[0x03, 0x01, 0x01, 0x02]]
inv_ax = [[0x0e, 0x0b, 0x0d, 0x09],
[0x09, 0x0e, 0x0b, 0x0d],
[0x0d, 0x09, 0x0e, 0x0b],
[0x0b, 0x0d, 0x09, 0x0e]]
def encrypt(plaintext, key, verbose=False):
"""
Perform the AES cipher routine on the given plaintext using the given key.
Specify verbose mode to print out each step of the routine.
"""
Nb = 4
Nk = int((len(key) * 4) / 32)
Nr = Nk + 6
w = key_expansion(text_to_bytes(key), Nb, Nr, Nk)
state = text_to_matrix(plaintext)
print_round(0, 'input', matrix_to_text(state), verbose)
add_round_key(state, w, 0, Nb)
print_round(0, 'k_sch', get_round_key(w, 0, Nb), verbose)
for round in range(1, Nr + 1):
print_round(round, 'start', matrix_to_text(state), verbose)
sub_bytes(state)
print_round(round, 's_box', matrix_to_text(state), verbose)
shift_rows(state)
print_round(round, 's_row', matrix_to_text(state), verbose)
if round != Nr:
mix_columns(state)
print_round(round, 'm_col', matrix_to_text(state), verbose)
add_round_key(state, w, round, Nb)
print_round(round, 'k_sch', get_round_key(w, round, Nb), verbose)
print_round(round, 'output', matrix_to_text(state), verbose)
return matrix_to_text(state)
def decrypt(ciphertext, key, verbose=False):
"""
Perform the AES inverse cipher routine on the given ciphertext using the given key.
Specify verbose mode to print out each step of the routine.
"""
Nb = 4
Nk = int((len(key) * 4) / 32)
Nr = Nk + 6
w = key_expansion(text_to_bytes(key), Nb, Nr, Nk)
state = text_to_matrix(ciphertext)
print_round(0, 'iinput', matrix_to_text(state), verbose)
add_round_key(state, w, Nr, Nb)
print_round(0, 'ik_sch', get_round_key(
w, Nr, Nb), verbose)
for round in range(Nr-1, 0, -1):
round_num = Nr-round
print_round(round_num, 'istart', matrix_to_text(state), verbose)
inv_shift_rows(state)
print_round(round_num, 'is_row', matrix_to_text(state), verbose)
inv_sub_bytes(state)
print_round(round_num, 'is_box', matrix_to_text(state), verbose)
print_round(round_num, 'ik_sch', get_round_key(w, round, Nb), verbose)
add_round_key(state, w, round, Nb)
print_round(round_num, 'ik_add', matrix_to_text(state), verbose)
inv_mix_columns(state)
print_round(Nr, 'istart', matrix_to_text(state), verbose)
inv_shift_rows(state)
print_round(Nr, 'is_row', matrix_to_text(state), verbose)
inv_sub_bytes(state)
print_round(Nr, 'is_box', matrix_to_text(state), verbose)
print_round(Nr, 'ik_sch', get_round_key(w, 0, Nb), verbose)
add_round_key(state, w, 0, Nb)
print_round(Nr, 'ioutput', matrix_to_text(state), verbose)
return matrix_to_text(state)
def xtime(a):
""" Multiply the given polynomial (finite field) by x. """
b = a << 1
# If x^8 is set, XOR with irreducible polynomial 1B to return within range
# AND with 0xffff to remove extraneous bits to the left
if a & (1 << 7):
b = (b ^ 0x1b) & 0b11111111
return b
def ff_add(a, b):
""" Add two finite fields (a and b) and return the result. """
return a ^ b
def ff_multiply(a, b):
""" Multiply two finite fields (a and b) and return the result. """
result = 0
for i in range(8):
if a == 0 or b == 0:
break
# If the rightmost bit of a is set, we can add b to the result
if a & 1:
result = ff_add(result, b)
# Continuously move down the bits of a while updating b
b = xtime(b)
a >>= 1
return result
def sub_bytes(state, s_box=s_box):
"""
Process the State using a nonlinear byte substitution table (S-box)
that operates on each of the State bytes independently.
"""
for i in range(4):
for j in range(4):
state[i][j] = s_box[state[i][j]]
def inv_sub_bytes(state):
"""
Apply the inverse of the byte substitution transformation, in which the
inverse S-box is applied to each byte of the State.
"""
sub_bytes(state, s_box=inv_s_box)
def sub_word(word):
"""
Take a four-byte input word and substitute each byte in the word with
its appropriate value from the S-Box
"""
bytes = [(word >> i & 0xff) for i in (24, 16, 8, 0)]
return create_word([(s_box[bytes[i]]) for i in range(4)])
def rot_word(word):
""" Perform a cyclic permutation on the input four-byte word. """
bytes = [(word >> i & 0xff) for i in (24, 16, 8, 0)]
return (bytes[1] << 24) | (bytes[2] << 16) | (bytes[3] << 8) | bytes[0]
def shift_rows(state):
"""
Cyclically shift the bytes in the last three rows of the state over different
byte offsets.
"""
state[1][0], state[1][1], state[1][2], state[1][3] = state[1][1], state[1][2], state[1][3], state[1][0]
state[2][0], state[2][1], state[2][2], state[2][3] = state[2][2], state[2][3], state[2][0], state[2][1]
state[3][0], state[3][1], state[3][2], state[3][3] = state[3][3], state[3][0], state[3][1], state[3][2]
def inv_shift_rows(state):
"""
Apply the inverse of ShiftRows by cyclically shifting the bytes in the last three
rows by different byte offsets.
"""
state[1][0], state[1][1], state[1][2], state[1][3] = state[1][3], state[1][0], state[1][1], state[1][2]
state[2][0], state[2][1], state[2][2], state[2][3] = state[2][2], state[2][3], state[2][0], state[2][1]
state[3][0], state[3][1], state[3][2], state[3][3] = state[3][1], state[3][2], state[3][3], state[3][0]
def mix_columns(state, m=ax):
"""
Transformation in the Cipher that takes all of the columns of the State and
mixes their data (independently of one another) to produce new columns.
"""
for c in range(4):
rows = [0, 0, 0, 0]
# For each value in the column, XOR with the result of multiplying
# the value from the a(x) matrix with the value from the state
for i in range(4):
rows[0] ^= ff_multiply(m[0][i], state[i][c])
rows[1] ^= ff_multiply(m[1][i], state[i][c])
rows[2] ^= ff_multiply(m[2][i], state[i][c])
rows[3] ^= ff_multiply(m[3][i], state[i][c])
# Update the state only after calculating new values
for r in range(4):
state[r][c] = rows[r]
def inv_mix_columns(state):
"""
Apply the inverse of MixColumns by taking all of the columns of the State
and mixing their data (independently of one another) to produce new columns.
"""
mix_columns(state, m=inv_ax)
def key_expansion(key_bytes, Nb, Nr, Nk):
""" Generate and return a key schedule via the key expansion routine. """
# Create an array of size (Nb * (Nr + 1))
w = [None] * (Nb * (Nr + 1))
# Generate the initial Nk words
for i in range(Nk):
w[i] = create_word([key_bytes[4*i], key_bytes[4*i+1],
key_bytes[4*i+2], key_bytes[4*i+3]])
# Follow the key expansion routine from Nk to (Nb * (Nr + 1))
# Almost a word-for-word translation of the pseudocode in FIPS-197 pp. 20
for i in range(Nk, Nb * (Nr + 1)):
temp = w[i-1]
if i % Nk == 0:
temp = sub_word(rot_word(temp)) ^ r_con[i // Nk]
elif Nk > 6 and i % Nk == 4:
temp = sub_word(temp)
w[i] = w[i-Nk] ^ temp
return w
def get_round_key(w, round, Nb):
""" Get the round key from the key schedule for the given round as a string. """
return ''.join(['{:08x}'.format(w[round * Nb + c]) for c in range(4)])
def add_round_key(state, w, round, Nb):
""" Add a round key to the state via an XOR operation with the words from the key schedule. """
for c in range(4):
word = w[round * Nb + c]
bytes = [(word >> i & 0xff) for i in (24, 16, 8, 0)]
for r in range(4):
state[r][c] ^= bytes[r]
def create_word(byte_arr):
"""
Take an array of 4 bytes and generate a single value representing a word.
e.g. create_word([0x00, 0x11, 0x22, 0x33])
=> 0x00112233
"""
return (byte_arr[0] << 24) | (byte_arr[1] << 16) | (byte_arr[2] << 8) | byte_arr[3]
def text_to_bytes(text):
"""
Convert a string representing bytes into an array of integers.
e.g. text_to_bytes("00112233445566778899aabbccddeeff")
=> [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff]
"""
return [int(text[i] + text[i+1], 16) for i in range(0, len(text), 2)]
def text_to_matrix(text):
"""
Convert a string representing 16 bytes into a 4x4 matrix.
e.g. text_to_matrix("00112233445566778899aabbccddeeff")
=> [[0x00, 0x44, 0x88, 0xcc],
[0x11, 0x55, 0x99, 0xdd],
[0x22, 0x66, 0xaa, 0xee],
[0x33, 0x77, 0xbb, 0xff]]
"""
matrix = []
for i in range(0, 8, 2):
matrix.append([int(text[i] + text[i+1], 16), int(text[i+8] + text[i+9], 16),
int(text[i+16] + text[i+17], 16), int(text[i+24] + text[i+25], 16)])
return matrix
def matrix_to_text(matrix):
"""
Convert a 4x4 matrix into a string representing 16 bytes.
e.g. matrix_to_text([[0x00, 0x44, 0x88, 0xcc],
[0x11, 0x55, 0x99, 0xdd],
[0x22, 0x66, 0xaa, 0xee],
[0x33, 0x77, 0xbb, 0xff]])
=> "00112233445566778899aabbccddeeff"
"""
return ''.join(['{:02x}{:02x}{:02x}{:02x}'.format(
matrix[0][c], matrix[1][c], matrix[2][c], matrix[3][c]) for c in range(4)])
def print_round(round, step, value, verbose):
"""
Print the value for a round (only in verbose mode)
e.g. print_round(0, "input", "00112233445566778899aabbccddeeff")
=> round[ 0].input 00112233445566778899aabbccddeeff
"""
if verbose:
print('{:<19} {:}'.format(
'round[{:2}].{:}'.format(round, step), value))
def perform_aes_algorithm(plaintext, key):
"""
Perform the AES algorithm upon the given inputs with verbose printing.
Follow the output format found in Appendix C of FIPS-197.
"""
if len(key) == 32:
print('C.1 AES-128 (Nk=4, Nr=10)\n')
elif len(key) == 48:
print('\nC.2 AES-192 (Nk=6, Nr=12)\n')
else:
print('\nC.3 AES-256 (Nk=8, Nr=14)\n')
print('{:<19} {:}'.format('PLAINTEXT:', plaintext))
print('{:<19} {:}\n'.format('KEY:', key))
print('CIPHER (ENCRYPT):')
ciphertext = encrypt(plaintext, key, verbose=True)
print('\nINVERSE CIPHER (DECRYPT):')
decrypt(ciphertext, key, verbose=True)
if __name__ == "__main__":
perform_aes_algorithm("00112233445566778899aabbccddeeff",
"000102030405060708090a0b0c0d0e0f")
perform_aes_algorithm("00112233445566778899aabbccddeeff",
"000102030405060708090a0b0c0d0e0f1011121314151617")
perform_aes_algorithm("00112233445566778899aabbccddeeff",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f")