-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwavepackets.nb
5911 lines (5885 loc) · 339 KB
/
wavepackets.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 346670, 5901]
NotebookOptionsPosition[ 345846, 5871]
NotebookOutlinePosition[ 346201, 5887]
CellTagsIndexPosition[ 346158, 5884]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\n",
RowBox[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], "\n",
RowBox[{
RowBox[{"g", "[", "k_", "]"}], "=",
RowBox[{"Piecewise", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{
RowBox[{
RowBox[{"-", "K"}], "/", "2"}], "<", "k", "<",
RowBox[{"K", "/", "2"}]}]}], "}"}], "}"}], ",", "0"}], "]"}]}],
"\n",
RowBox[{
RowBox[{"f", "[", "x_", "]"}], "=",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"g", "[", "k", "]"}], " ",
RowBox[{"Exp", "[",
RowBox[{"I", " ", "k", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}]}],
"\n",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"f", "[", "x", "]"}], "]"}], "^", "2"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}],
"\n",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"g", "[", "k", "]"}], "]"}], "^", "2"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}],
"\n",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"I", " ", "a", " ", "x"}], "]"}], "/",
RowBox[{"x", "^", "2"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.559409232047681*^9, 3.559409258402177*^9}, {
3.5594092951390953`*^9, 3.5594094451522427`*^9}, {3.5594097157434483`*^9,
3.559409766543859*^9}, {3.559409884483539*^9, 3.559409891724969*^9}, {
3.5594110772264833`*^9, 3.5594110986643953`*^9}}],
Cell[BoxData[
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{"n",
RowBox[{
RowBox[{"-",
FractionBox["K", "2"]}], "<", "k", "<",
FractionBox["K", "2"]}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{{3.55941108228481*^9, 3.559411102862836*^9}}],
Cell[BoxData[
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
FractionBox[
RowBox[{"2", " ", "n", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"K", " ", "x"}], "2"], "]"}]}], "x"],
RowBox[{"K", ">", "0"}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{{3.55941108228481*^9, 3.5594111030627537`*^9}}],
Cell[BoxData[
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{"2", " ", "K", " ", "n", " ", "\[Pi]", " ",
RowBox[{"Conjugate", "[", "n", "]"}]}],
RowBox[{"K", ">", "0"}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{{3.55941108228481*^9, 3.559411104304777*^9}}],
Cell[BoxData[
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{"K", " ",
SuperscriptBox[
RowBox[{"Abs", "[", "n", "]"}], "2"]}],
RowBox[{"K", ">", "0"}]},
{"0",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{{3.55941108228481*^9, 3.5594111043316107`*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"Integrate", "::", "idiv"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Integral of \[NoBreak]\\!\\(\[ExponentialE]\\^\\(\
\[ImaginaryI]\\\\ a\\\\ x\\)\\/x\\^2\\)\[NoBreak] does not converge on \
\[NoBreak]\\!\\({\\(\\(-\[Infinity]\\)\\), \[Infinity]}\\)\[NoBreak]. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/Integrate/idiv\\\", \
ButtonNote -> \\\"Integrate::idiv\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.559411085010049*^9, 3.559411105352268*^9}}],
Cell[BoxData[
RowBox[{
SubsuperscriptBox["\[Integral]",
RowBox[{"-", "\[Infinity]"}], "\[Infinity]"],
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "a", " ", "x"}]],
SuperscriptBox["x", "2"]],
RowBox[{"\[DifferentialD]", "x"}]}]}]], "Output",
CellChangeTimes->{{3.55941108228481*^9, 3.55941110535367*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], "\n",
RowBox[{
RowBox[{"g", "[", "k_", "]"}], "=",
FractionBox["n",
RowBox[{
RowBox[{"k", "^", "2"}], " ", "+",
RowBox[{"\[Alpha]", "^", "2", " "}]}]]}], "\n",
RowBox[{
RowBox[{
RowBox[{"f", "[", "x_", "]"}], "=",
RowBox[{"FourierTransform", "[",
RowBox[{
FractionBox["n",
RowBox[{
RowBox[{"k", "^", "2"}], " ", "+",
RowBox[{"\[Alpha]", "^", "2", " "}]}]], ",", "k", ",", "x"}], "]"}]}],
" "}], "\n",
RowBox[{"n", "=", "20"}], "\n",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"g", "[", "k", "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",",
RowBox[{"-", ".0001"}], ",", ".0001"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}]}], "]"}], "\n",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"f", "[", "k", "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.559413696477043*^9, 3.559413762546015*^9}, {
3.559413818170086*^9, 3.559413832687702*^9}, {3.559413872841262*^9,
3.559413931701408*^9}, {3.559413961798485*^9, 3.559413962019725*^9}, {
3.559414045820612*^9, 3.55941405325025*^9}, {3.559414087400647*^9,
3.559414168217416*^9}, {3.559414232729035*^9, 3.559414260990888*^9}, {
3.559414297086656*^9, 3.559414463449561*^9}}],
Cell[BoxData[
FractionBox["n",
RowBox[{
SuperscriptBox["k", "2"], "+",
SuperscriptBox["\[Alpha]", "2"]}]]], "Output",
CellChangeTimes->{
3.559414170316308*^9, 3.559414261756814*^9, {3.559414300266189*^9,
3.559414320030713*^9}, {3.559414362502406*^9, 3.5594144640998087`*^9}}],
Cell[BoxData[
RowBox[{
FractionBox["1",
RowBox[{"2", " ", "\[Alpha]"}]],
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "x"}], " ", "\[Alpha]"}]], " ", "n", " ",
SqrtBox[
FractionBox["\[Pi]", "2"]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ", "x", " ", "\[Alpha]"}]]}], ")"}], " ",
RowBox[{"Sign", "[", "x", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"Sign", "[",
RowBox[{"Abs", "[",
RowBox[{"Re", "[", "\[Alpha]", "]"}], "]"}], "]"}]}], ")"}]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ", "x", " ", "\[Alpha]"}]], " ",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"-", "x"}], " ",
RowBox[{"Sign", "[",
RowBox[{"Re", "[", "\[Alpha]", "]"}], "]"}]}], "]"}]}], "+",
RowBox[{"HeavisideTheta", "[",
RowBox[{"x", " ",
RowBox[{"Sign", "[",
RowBox[{"Re", "[", "\[Alpha]", "]"}], "]"}]}], "]"}]}], ")"}], " ",
RowBox[{"Sign", "[",
RowBox[{"Re", "[", "\[Alpha]", "]"}], "]"}]}]}], ")"}]}]}]], "Output",
CellChangeTimes->{
3.559414170316308*^9, 3.559414261756814*^9, {3.559414300266189*^9,
3.559414320030713*^9}, {3.559414362502406*^9, 3.5594144641743383`*^9}}],
Cell[BoxData["20"], "Output",
CellChangeTimes->{
3.559414170316308*^9, 3.559414261756814*^9, {3.559414300266189*^9,
3.559414320030713*^9}, {3.559414362502406*^9, 3.559414464176064*^9}}],
Cell[BoxData[
Graphics3DBox[GraphicsComplex3DBox[CompressedData["
1:eJx1nXncV9P2x0sqUjRTGkTXcF1jgzJ891ORSoOMUaZIpMiUkFAyFkki9Luu
scjslvF7imSsVERJNMj1lAoRj6Ffzvm897e1er7PP71e79dqnbXX2Xuttafz
bdb3khP6bVehQoVV1StUqLTl31ZP1fx48+a9ZpxdduzUFa0bJrMOP6buAxPf
DzM67bzHuObNIt+r2zd1dx04P0yYu+vXncY1ijxpf9Cjt9RfHKbuVOeGQV/U
j7zlY5dvmjhxZXgr1VMr8kbJ7C16fgjPpfJVIn+l695b5CuVvJzyXxL4Z+s2
/Dxx4l4lFdK/VW/Ap1/yxZ395nzZ7uFMPsDLJP94pr8E/r70v5nZE/nesmdy
Zn/kR8j+cVl7I39H7c1n/ol8H/lH/izx/sTPJxzdt+LBQ+snt/6jk/EzfHmF
/xk/w5t/2dL4GX7AtdcYP8Pr3jnf+Bn+0OR2xs/wC84885et/Qw/o2KFyw/v
tCr6GX675PEzfKr042d4E9mDn+EtZT9+hu+v9uJn+DfyD372/sTPR9857JTr
Xq2dXDSpi/EzvEWXUuNn+NIH2ho/w2cdfYPxM7zPS0uMn+G/z+1l/Axfuek1
42f4LxUrVJ/X8vvoZ3iVX18zfoZXn9fL+BneX/bgZ/iHsh8/w1epvfgZfpj8
g5+9P/HzwOcPOPXen2skAx7pavwMb7jfWuNn+LfXHmX8DC+rMMr4Gb7xwBXG
z/BPkouMn+EdX6+yaWs/w++oePbMdvN/iX6GXyB5/Az/RvrxM/wv2YOf4RUr
jjJ+hq9Te/EzvLH8g5+9P/Hz8Wk/r5KMatnd+Bl+z6TvjZ/hx9xQYvwM//i5
W42f4UvT8VXwM3zfdJwW/Awfn473gp/hZ6dxY/v2+Bk+TfL4Gd5W+vEz/FvZ
g5/hi2Q/foZ3U3vxM3yC/IOfvT/x84Wp///Mv3FiD+Nn+H+eXGf8DP/lyfbG
z/D2Pe8wfobXS997wc/wn9P+X/Az/KO0Hxb8DL8r7c/1o5/h6yWPn+FVKo4y
foY3lT34Gd5Z9uNn+J9qL36GPyb/4GfvT/x8Xsq/z9eucLzxM7zDseuNn+Fl
P3Ywfoaf/M1o42f4Q6k9BT/Dj0rbVfAz/PvU/wU/w+9P/dw6+hm+S8VRxs/w
7tKPn+FPyB78DO8j+/EzvOJPHYyf4cfKP/jZ+xM/Z+345IiRba2f4VcPs36G
9zznaONneOWBY4yf4Vekegp+hldI5Qt+hv960RjjZ3jLFvdMnDixc0f8DG84
cIzxM7yW9ONn+HDZg5/h1WU/fob3UnvxM/y6YdbP3p/4eWjm/5zvz3Dfn+G+
P8N9f4b7/gz3/Rnu+zN8qOvPcN+f4b4/w31/hvv+DPf9Ge77s/cnfr48iyc5
H5/hPj7DfXyG+/gM9/EZ7uMz3Mdn+A0uPsN9fIb7+Az38Rnu4zPcx2e4j8/e
n/j55Cw/Bl9vwH29Aff1BtzXG3Bfb8B9vQH39Qa8l6s34L7egPt6A+7rDbiv
N+C+3oD7esP7Ez8Pzuq94OtnuK+f4b5+hvv6Ge7rZ7ivn+G+foaPcvUz3NfP
cF8/w339DPf1M9zXz3BfP3t/4ueO2fwl+Pkg3M8H4X4+CPfzQbifD8L9fBDu
54PwH918EO7ng3A/H4T7+SDczwfhfj4I9/NB70/8fFI2Hw9+fQPu1zfgfn0D
7tc34H59A+7XN+B+fQN+mlvfgPv1Dbhf34D79Q24X9+A+/UNuF/f8P5063Wh
yHpdKLJeF4qs14Ui63WhyHpdKLJeF4qs14Ui63WhyHpdKLJeF4qs14Ui63Wh
yHpdKLJeF/2ZT/WvTk5r+ukpt526WzJu5l8/TJzYoWRCxgP8M3Hkj7tw/dOL
7q+bTF447qet5eFrxZE/6qUdKzZfUjM5d8zKjVvLwyeLI39mame1ZHbqt4I8
fKf1GUe+fTpOt0sWpHGmIA+v/2vGke+e9rdf8iPTfl6Qh78rjvzpabz9Mr80
zTsFefgeFUcZ+REZz3l5uJfvlT035+2Be3uOzdoVfHvhvr19M78F70+492fI
3kvw7wvu31e37L0H3x/gvj+cnvWr4PsbnP52zdW7/Npp3J4z6IeLNoy76eHn
58T4AB+R75j258NSXifya7r9cwv/LjyQjpfqkTe7/fdHbqn/W+SsY/+1en3K
Z6XjqGLhub/13TKOapXAkd/5lq4pp13w/lftbsYL67eTW83/cev2Ij9V8nDk
10r+tey5JdizVvaMzeyPvIXaBUd/rW+zdh2a+SfK3yz/wJG/Pdc85fJ/SRH/
lxTzP3Hg/dqtjP/hZx5e89Gt/Qw/dcXtxp+sx979YAfTD+GfiuMf9AyUHvwA
v0TPpb3wT2Qn9hOXbq+eM/bDv7mqmbEfvlvzqcZ+1jmbTbnMjDt4P3HsR88B
0oP98E16LvbDJ8hO7CdOJmmcL9gPn57mi4L98N3SvFOwn/XDU9M6oWA//EFx
7EfPAdKD/fD39Vzsh38gO7GfuH1+WncV7IcvSuu3gv3w09I6sGA/63Kt0rq9
YD/8anHsR88g6cF++P/0XOyHXyY7sZ88cn06DyrYDw/pfKpgP/zztC4q2M96
1xvp/KJgP7zCjIuM/ej5XnqwH368nov98DtkJ/aT12qk6xIF++Eb0/Wcgv3w
iem8u2A/60jfputgBfvh+w8cY+xHzzPSg/3wyj91MPbDG8pO7CfPevvh3n64
t5/1Ge9/uPc/erz9cG8/3NtP3vf9B+77D9z3H9Y9fP+H+/6PHt9/4L7/wH3/
oQ7x4xfuxy/cj1/WE3z8gfv4gx4/fuF+/ML9+KUu8vET7uMn3MdP5uk+/sN9
/EePj59wHz/hPn5Sp/n8Bff5C+7zF/Nfn3/hPv+ix+cvuM9fcJ+/qBt9/QD3
9QPc1w/MK33dBff1FXp8/QD39QOc+oF6lTrW16twXy/Bfb0Kp15FnnnccNVp
MQ7zXNWHrr4Nvr6FF6ljQ39Xl8KpV2Pc1nN9XQqnLkU+zt/13BjPJU9d6urY
4OtYuK9Xvf/hyHf/duzWPNbzcOfnBD+zbkDdO7f3R2bdAN77xpbpvN61N6G9
rAMgP1DyrAPAP5d+Z3+0E3uoY9edvMjYAx/2VrdUP8+FjxHnufBfpQf91Jln
PrHM6Ic3mNvX6IfvJ45++IXSg37qwCbpekVBP/ygdN2joB9eIo5++H7Sg37q
tAPT9b2CfniSrhMW9MM/Fkc/vK30oJ866s50PbygH/5huq5e0A9fKo5++P3S
g37qnHCs3X+EH5/uQxX0w88WRz+8s/SgnzrE64d7/XCvH+71Uyd4/8C9f+De
P3DvH/K4f79w/37h/v3C/fslz/r+Cff9E+77J9z3T/KgH19wP77gfnzB/fgi
T/n4APfxAe7jA5z44OJn8HGJOOzjJJw4GfutuI+HcOIh6w/F8inrJ/d8d5DJ
p/B7j69i6gf4+reuSuMzcRu+/dtXmbwGf0J6yEfwf+u52MN6RaP32xp74Fcd
28DYA9+l10PGHnhzceyB3yo92APfV8/FHtYf6n/ZztgDf+zDfY098MEdXzP2
wEeJYw98mvRgT1wP0XOxh/WEm9L1/4I98CbpPkLBHnjNdD+iYA/8H+LYAz9I
erAHPlbPxR7WB/ql+2sFe+DL0326gj3wDel+X8EeeOWDVhh74D9KD/bAB+u5
2MN8/5V0/7pgD3xDug9esAdeK903LNgD31sce+I5nMntjT3wWXou9sTzJ23t
/BreJT1nUrAHfml6zqRgD3yUOPbAe0sP9sBvb2vny8zHvX/g3j9w7x+49088
1+H8A/f+YX7t+w/c9x+47z9w33/gvv/Aff9hvuzHF9yPL7gfX3A/vuB+fMH9
+GL+6+MP3McfuI8/cb/exR+4jz9xPu7iD/NZH5/hPj7DfXyG+/gM9/EZ7uMz
81Ofv+A+f8F9/oL7/AX3+QtO/hqW5vfaMxa9sPvUpf13TR66dfCW/P59aD6o
3sFfTNsx8maX3j+h+m9/hYNTPZVKIv/97ToPTNyxpPLBDcdOG7RL5DP3nnD4
169vjPrf+71VxX9OqZPMHTDc6IfXmTLN6I/yR39v9MMvfuFRo//yOx6euu6T
XZJlK24z+uFP/Hue0Q8/9uxd6m6tH95y+bNG/6lpHbJDsiCdbxb0wxedtNLo
h9+RznML+uH1pk03+o9I67oKyWPjJxr98Eff+8Hohz+YrqsU9MN3Pjhv9Jek
/fDHfO+5k4x++M6/lxn98KHpullBP7xZj7eM/o7puJuT/3HSv41++G5r/zL6
4U3SddGCfnj3OrOM/j5pv12du6iS1Q+f8eCfRj98bLpuWdAPHz/sbaP//LS+
LcvN+utBox++fbVNRj/843RdrqAfvvH2GUZ/97Su3j5svmuC0Q//X+s1Rj98
cbruVNAPvzj3utF/4aevVTyyfvXQaPqdRj98wJ5LjH748280NvrhFe97yeh/
a4+3n/74/Vqh4RU3Gf3wWz962+iHn9Bmsxm/8GfHTzH6P140+ZSRt9YLv86+
yuiHd2w12eiH50ctNvrhVxw2KdW/S8ZjHHtZcenwTE/kOyiONcyeG+NYG8W9
oZmdkU9RnMT+udlzE+znufALZA/tgtMu5Ilv5yi+YSfyj6u9cOSnKU7iH+Tx
D+2Cn6nn4jc4fkMe/fsrPuMH5Cu/m7UXjvxixXn8MyN77wn9h/bCH1F/wD9w
+hXyxOd9FZ/xA/Jt1N/gyB+oOI9/kKd/0l74f/Rc/AOn3yKP/rzyC35Afm+1
F478GuUp/NMvG3cJ45f2wjdOeMn4B864Rp78UlX5BT8gP0HjHY78ZcpT+Ad5
4gPthY/Uc/EPnLiBPPrXKT/iB+T3VXvhyC9TnsU/nbO4lxA/aS/8HMVD/AMn
riJPfqyg/IgfkJ+heAtHfoTyLP5BnvhMe+EVDltj/AMnbiOP/teV3/ED8tXH
TjD+Qf4F1QkxP2Z5J0/+or3wb5WPYt4UJ68hT36vq/yOH5CfpnwHR/4M1Qkx
/0qe/Eh74Y303JiXxcmbyKN/b9Un+AH5+WovHPkLVOfgn05Z3s9TP9Be+K2q
B/APnLoCeeqTdqpP8APyV6negCO/veoc/IM89QnthX+u5+IfOHUL8ug/RPUV
fkB+qNoLR/4v1Wn4Z0LGc9RvtBdOe/EPnLou9jfVV/gTPyCPH2K/kjx+wz/I
Ux/SXjjtxT9w6sbY36Qff+IH5PFD7FeSx2/4p0vWr3LUz7QXznjBP3DqauSp
DxmP+AF5xhEcecYd/kGe+pz2whkv+AdO3Y48+hmP+AF5xhEcecZdnF9kcSkw
f4nxRJx4G+cd4sxrkKe+JZ7HOCN54jAceeJ2nL9InvlRjCfixNs4rxFn3oQ8
+onnMc5InjgMR564HeNzltcC88c4XsTJ1zE+izOvRJ76nHogjiPJk8fhyJP3
Y3yWPPPTOF7EydcxPoszb0Ue/dQDcRxJnjwOR568j3+uyuqiwPyd9sKp9/AP
nHk98swvqCfxA/LUgXDkqRvxD/KsD9BeOPUe/oGzboA8+qkn8QPy1IFw5Kkb
8c8HWV0dWD+hvXDmC/gHzroK8syPmI/gB+SZR8CRZ96Bf6I9kqe9cOYL+AfO
ug3y6Gc+gh+QZx4BR555B/75LJuXBdavaC+ceR/+gbOuRXvhzAdpb5R380Q4
80TaC2cdDPvhzB/ZL2NeObn1EWa/DP6qOPLMs/oPONHIw4eKx3t/mnc8ekF/
Iw9/SRx56vBeh1xl5OEXiCNPXXrzrBFGHn6fOPLUaQfvebuRh7cTj/ePVLec
3GWMkYefL448efynI+2+Nnz7o0YbefJa9bKbjXzMj+Jx319x/uEbr7P7/uLP
i8d78Yp7zy68xMjD8+LIEwdabzjDyMOPFUeecdHms2ONPLyz+Oe1ap7XvPNe
M5aOvrNi62MbJEevWXTwTrd+GPd5OR9SOc1fc+J4Qf6RPreY8QJf9thUEzc4
x3JFt4fNOEJ+k+QZR/DXpB+OntNOGp5y2V9SxP4Sbz/+Yb3C+weOf5Bn/u79
D/f+Zz7r3y/cv1/md77/wH3/Yb7j+2ecT7n+Sf3v+z/c93/qYT++4H58UR/6
8Qv345d6yccHuI8P1A8+/sB9/CGf+vgGJ77RzznnQD+Bsz+SXzje9B/ykY+3
cOIt/bCI/hKvn/H4ZdafA/2Z55IvyAuMR+QZj9iDPPmCcYc8445x5J+LHzjn
gJ3cj+Pc2rkz90vvFf5fut/0R0Ke+mpz60duqd8g3ptD/uJGuef+0Wl5uwWp
nkVR/tV6FVZOnHhu9Fux5zKu//fOnea55LtG3W82z0X+rUvP7XzgXv+Lz0X+
6co1vvv7uejn3NopG1cY/eTHm+a/a/Qj/86qNucfX/XHqB/5o8ZXX7e1fs6t
PZ/eByzoJ582TM9PFvQj/3p63/DPqB/5wen9qYJ+zq39mN7PLegn/y5Lz+UW
9CP/V3o/t0Z79CPfLr3/VdDPubU90nugBf3k67npueuCfuTPS++lNo/6kX8u
vddW0M+5tVbpdwAK+snva9Pz/AX9yD+R3uM+JepH/tX0Xl5BP+fWvH7qgTbp
ufeCfuQvdPqRPzu9r1fQz7k17x/qhxfSc90F/cif4PyD/GPpPb6Cfs6t+fdL
vXFKem65oB/5de79In9Tel+voJ9za75/Up/s13+l6Z/Iv+j6J/KVTt1nw9b6
Obfmxxf1zD/fn2z0Iz/TjS/k97j62TVb6yfe+vhA/dPr7LONfuTfdPEB+WVt
9139t/7Y3zi35uIY8TM3cfxXf8vDqU/gIzIe4LMdJx62r5/FQ/RQn2AP8vD+
h1tOfGtZJYtv6KFuwW/Iw6c4ThybrTiGHuoZ3i/y8NGOE69+U7xCD3UO/RB5
eI1PLCcufaC4FMej6h/GC/LwA9ZbTvxp82sWf9BDXcS4Rh7+P8eJM+0rZnEG
PdRLxB/k4chHOxVP0I8e6ijiJPJw7IcTN2hvjLeqr4jn0Q/iHzhOfMD/0c+q
u8g70X7x3xwnDtAf0EM9Rn5EHj7bccY7/RM91F3kceTh9H8445rxgp5YL6kO
QR7OeIQz3hm/1G+M3yYPfp7WUdwHYbwfXiE7v0r9xrymneY1rFcg3+n6O9N1
A84Fwff+5Of0fgT2o+erie98+bc9fJcg3v9VnXZ7Fg9jnNmuwmFpPGS9Av0n
6bnET+IM8RP91Fc7zb7T6Cf+5FSPoYc4Q5xHD3XUNcoL6CH+PKm6Cz3EGfIR
eqiXFip/oYf4c5TqK/QQZ8ib6KEuqjevl9FD/Kk4NKujYv2gOEN+Rw/1T3vV
A+gh/vyoegk9xBnqEPRQ55yqugU9xJ9dfupg9BBnqJfQQz3j9RB/Ttdz0UOc
oa5DD3WLbxfxZ6H8EOtDxRnqT/RQn3g/E3+u1nuJflacoU5GD3WIf+/En67q
J+ghzlDPo4d6w/dD4k9X9Vv0EGeYd6CHusKPC+LPNRpHxA3iDHEj1sOqN/w8
C3nmWcQN4hJxg3UYOOszxDHO81/wgI0b8X6Wnss6DHpYnyFuwIkbnD+EH6Z4
xXzTt5f5KXFsjNaLkIevqJLNT/Eb9sOZL/Pc6bceYObp8HfFuV8AJz47/YnX
T5xEv/Nngj95LvL+uT4v0N5iecTb6fJIII+4vBDIC87PoYifoz93St9v03jf
bed03+eT+H0e+PEvr06/P9N4+c6jB33RLObB+6/Kd75o549D49TOBvG+2+p0
X2lZ/O5NXE9I13NWhu+X1Jo8bVC96IfuB+zZq7Tr6ngfJJ5TvfLY1A/oJx/9
lp73KOiHT03X0wr64zr5dv9M9aOHfPRSuj9Y0AMfl65TFfSQp1Zfc7DRQz6q
l+6rFvTAd03X6wp6yFOTJrQyeshHTdL93IIe+JHpOltBD3nqgZPbGj3ko4/T
ffCCHniFo0YbPeSpZdOPMHrIR/9M998LeuDndBlj9JCnLnzzSKOHfOT1wL0e
8tQR51s95CPfLrhvF3nqxBcPN3rIR97PcO9n8tRL/znM6CEf+fcO9++dPHV6
yxZGD/nI90O474fkqY4DDjB6yEd+XMD9uCBPXd1h71RPs0xPHO/LNH757ha8
j8bvj5meGAeO1vglLxD3yAtVszgT40AtxRm+cwU/UXGmURZnYhx4QHEGOxnv
G9Re7IQ/rvZiJ/XtJWovPJ4zV3wgjyNPHsdvcO834sZTeo/YA79D75HnUicf
qfcIJ84sVZzBHuSpT7AHTn/AHuJPdfVP7IHXVP/kudTbx6t/wolX9yheYQ/y
1F3YA6efY0/8fpfGHfbAW2nc8Vzq9ikad3Di3l2Ke9iDPPUk9sAZv9hDPHxP
8QR74L8eOdrYQ/3fWfEETvz8RPEz1tuSp06O8U2cuIQ98ftjipPYAz9dcZLn
Mo84RHESThw+S3EYe5Cn/sceOPEWe+L3zZw9cG8P8xGeG/2meI6d2IM88xrs
gZNHsIc4798X3L8v5jW8Fzh5gfeIPcgzX8MeOPkRe+L32Vx/hvv+zPyIfgsn
v9DP4/xR8sxDY74WJ+9jD3nHj3e4H+/MsxjXcPIUcSD2Z8kzv479WZx6BnvI
Xz4ewn08ZL5G3IOT74iT2IM86wbYA6dOwx7yoM8XcJ8v4jkW5QU4eZM8gj3I
sx6CPXHfUHqot5l/+Xob7utt5lP3uzyIvM/XcJ+v0UO+Zt2JeQfrTm5/P7C/
T3vRw/pSrBv1XF//x3muq//RQ/3vzgMEzgNQP6DH1w9wXz+gn/qB+QV1wqJL
Opt5Gfl9xn5L0vkR/qee+bTnm6ke7If/nDQ27xf956fnGwvvF/75od+Z98tz
Z92cpPrRw3yz96v/TfWc+3yNl6cN2iPaU7Lhih9P/3VBrAORf+ObZan/+x5Z
t1fzzrtFO2vt3a/j5D7Lozz7sL9f8q2Rx559egww8txDXzFlnZGnDln62MVG
nnviF9+z0chTJ7TY5zIjzz3uJ/71m5Enj++36Aojzz3rEVf+YeTJszNeGGLk
uQe9w8V/GXny4K+vXmXkuafcsv5mI0+e+nidlecesddPHul0vJXnnq+3nzh/
zrIrjTz3cL1/iMO7T7zcyHNP1vufOHnFDYONPPdY/fuN8XD8QCPPOQfff+L5
uk/7p/L0Z+It4wKOntpjXjX9PMaH24ek/Rx5+q2Xp98u3H5oKr9u/M6LNl9f
+L2qZg+WnP2Pdz8OPTbv9srmzY0jb9xq07oW3y0Kb31Sd9bmzbvFcbf3Xu2m
tN34deTIXzmkY8pbue9UTNR92+NT/TWinuqT+l2/Zv9Nuhf8U1zP71XvvZfP
3/sQ9bMZ8ffCxuj7wy0y+fgd0ZP/+vC/f8u31DoPvPt9u9Vc1Wanku7ZcyPf
3PTq9Lkt3XctHpSdM7N2xbjR8vrBrT8c+XXI9DSOvPc7D23R81nk6Nn1if+k
XH4u/O5Y/VzqZ/wff5fqqbsXHvB5wf/wl2c/nurBz4Xfk+pi/AzfU/es8Q/8
89Inp23tH/j/JZ2Mf+DXPnKb8U/8Lof00174dNlJe+HvqF20l7jX5OJ7THvh
rfeZYtoLX/Jkd9NeeCPdc6e98FVLek/fur3wgXsPNu2Fj2x+n2lv/F0n6ae9
8Dayk/b6dtFe4vY/54w37YU/8O7Tpr3wH0b1NO2F367vDNBe+HVzvzXtjb/T
9OGdpr3w3dL+WWgvfLT00174JNlJe327aC95p/Tde0174SuffMa0F95l3Imm
vfCL9J0H2ht/v+md417Zur3wYc89ZtoLb5u+r0J74QOln/bCv5GdtBf+ndpF
e8mbZ5w5wbQXvvN7z5r2wld/dJJpLzyv72zQXnjPGbeY9sJnzn/BtDfqT+0v
tBc+Q/ppL7ym7KS9vl20l7w/cqxtL7zxvs+Z9sJntTrZtBd+k75zQnvj90/y
D5r2wkccOs20F940fW6hvfCbpZ/2WvlCe6M9Y217qVv8+4X79wv37xfu3y/c
v1+4f79Rv3u/cP9+4f79+nbRXuouP37hfvzC/fiF+/Ebf9/HjV+4H79wP37h
fvzC/fiF+/FL3ejjM9zHZ7iPz3Afn+E+PsfftXHxGe7jM9zHZ7iPz75dtJe6
1+dfuM+/cJ9/4T7/wn3+hfv8C/f5N/4ujMu/cJ9/fbtob/ydF1dfwX19Vfh9
FltfwX19Bff1FdzXV3BfX8Xv6rj6Cu7rK7ivr5gv+Hoe7ut5uK/b4dTttBfu
6224r7fhvt6GU2/TXrirn+N6C/Uz7YKfrjrczVMC8xTaBb9J3zulXfCzNO+g
XfBRWuehXfDamr/QLvjN0u/mEWFf2ePmEYF5BO2t83v+lCob6idHHXniQe3e
LLT3E+37PNj5F/MeJ1wwtOJLX+2a/GfZ5ek8hXbVlp4us/qa9/Wp9DTQfS6e
W/mYxU+feEidZPJt7Y2fZ2s/6NGBZea5t7447pQKzeomc48Zap67vfSsvLmH
GRfvSs9s3ZvDD8xPB7Z5xPhhXeNvK7b/Zudkbjcbry7VftCw5yab937NH1Of
7ta3ZnLjmmuNPd9LT5VudW1ckp6ge47Yw7rN4NwTZtzd+FnTik+2q53U+9CO
uwWpP6smO7zs8oj2iYYNsHnk83Tdacfk9XnDjZ3zpee/9V8wdp4kPSN1XxU7
z9V60Sk32Xi4uv0VU/9XuUZScouNhwPT9m7O//Jfm98P1/7RWf1sfn8j9UPF
5NofbzB2DpCeDSv/YfJ4G+m5R/eOsfNYrVM1qzbV2PlB+t4rJ42/snmqdapn
Q/7+E23ddSTfQ3jY1l3tU/0b82+fOMLY2VJ6Xn75MmPnEdIzWPfHsfNUrY/N
mWfrhz6pn//IP7fA1g//e+7vvPNmfu1oa+e+2m/6uKGth/+VxrdF+bE/WTvf
k57Kt91n7GwkPfX1HQDsLNG63Jmf2rquS2p/aX7jObauuzTjOXicp2gfqs+n
1p+9Uv+syK2ab+28UnqWnz3e2Hk+3z3Qdwywc5rWAxc0tPV2oxfS9ua+H23t
HJz5OYef4/xR+1MfzrP989x0XPyay6+70dh5mfR0OvJCY+dF0vOevieAnd21
Drnvw9afnbP+k6MfYufCrN+GJl+5eb32rZqon2PnnDTuVQpNu9hx9In0HL57
fWNnT+mZr3v92Nme9c9+tn/ekI3HHOM6xs8sDgTiAHZepP2sk26y9d7/+lc8
9a69dwpVVl1n7FwvPdP/fMCuq0jPZN2vx84zte56/QBbl36RxbdAnMTOUVlc
DXU/tHXa29rnulhxGDu3G3D+KWU9a4XL37jG2Hmz9MxcucnkHfR00T137Lxa
673DlUew85csXwTyDnbeM6by1NMq1A9PLbD11QLtf71b41eTH2vu0bXiMzXr
hQsWDjF2jpeek+f8y9g5X3qm6b45drLO3LelqQNn/LvDmlOqJw3CL6faumiZ
9q0uHPaTsafxokOmnjVvt7By38tSe6iLemuf6AZ9lx47H5b+K15ra+oH9K/X
uUrqH/SMkB7WdSdlepJB0gOvp/rkaNUn7rnJFU7+rsxvSQ/5DV5V9caXqjfQ
M07yJzt58vhr6ifwH1UnVFCdgJ6bJD/TyZNnX9C4gC9SHn9WeRw9ayQ/3cmT
B1sqDsCvVJ79TnkWPfMkf7iTP0N5qr3iHjynPPis8iB6LpB8JyffVXnkC8V5
+CXPZ3lq8633GT3nSH65k99FcR55u85fmkN/tCfTnyMPIt9JcRj74f0V52kv
etTe3MtO/nrFSfwJlz8D/kfPFZLf4OSJY7xfeKniJP0BPeoP4b9OnjhDf4OP
VByjf6LnB8lXcfI7Zv0/0P/hdyvOMF7QU0XyK538rtl4DIxHN34D4xc9dSXP
/IJ4on3nhHjCvk+DLP4kr2//zpa49EvkEzV/ufTz91LeOoszM77Q/uwaxRm4
9r+2xI9s/oKd7L/00PzUze+Ss9y+UpTX74cyv2skO/Oy0837Ej/vo703qr1u
PpgwHyS/EA+J2/itq/bB5+n3VvDPTlkeSUpfWWT8dofmX6t/Xmz8NkfzqReV
R+Dva/71tuZf+I39mvlax8A/cV9bv2OLH3aWPWtlD+319tOunM77jdXv4GD/
nxemeTzpcvM3pl3XaR435l//M+1KNC87RnkcPkTzuCM0j6Nd7Mss03oU7YJf
q99BjuvJWV2RdJM9tAv775b9tOscnRt8R79PhP1fZXVUsnTgD6ZdX2red36a
lwvt6qt53KOqo+Cna953veZ9tIv9l6u0rki74Cfod7Rp1yrZ87XsoV3eftp1
jM4fDtTvRmH/21kdmzySrgMU2jVT88TLvvndtKuj5n1zVMfCc5xX1DyRdrHP
8qDWh2kX/Hr9Djvtek/2PCF7aBf2D5L9tOtEnWMcpd/zwv4e2Twi/8CoCuu3
blc3zSuf719x/dbtYp74tuYR8GM0rxygeSXtYj/lOK3z0y74rWm7Wsd2nS57
Jske2oX9N8t+2nWJzkPW0e+sYf9B2Twu/870SqZdp2ge2qzS9qZdOc0rb9I8
Dj5Y89BamofSrrhvov0a2gXfs8U9EydO7NzR7i+vyL8re2gX9teT/bRrkM5V
+nYNz+zPYT+8g+attBf7Z2geiv3wEzRvpb20i/0R/77gF7j3dZLsaS57aBf2
+3bpPeZ8Pzw16285+hv8NM1z6Z/Y30PzVvob/BzNc+mftIt9ED++4nf13fjq
Kntekj2uH+Z8Pzxa5zx93JidxYdAfIBr/AbiCfZ34Fyo4gP8OM2LiSe0i/0O
Hw/hXVw8VLwKQ2SPPeewXfBx4yydF/VxfkUWzwPxHL5S82jiP/afxbxY8Rx+
vubRxH/axb6Gz1/wK13+Un4JA2QP7fL2u7wcfF6+Psu/gfwL35zl60C+xv5r
NI8m/8Jnat5NvqZd7F/4egO+zNUbw2TPWNnj8nLweVl1SPB11JisXgrUS/Aa
mqdTX2H/h5p3Uy/B52meTn1Fu9i/oP6kXfDjXJ15u+z5Tva4Oir4Ouo0N0/H
/gey+jlQP8Mbar5PvY39n+v8GPUzXOchA/W2O68VOK+FPPxG7Y+4c1yBc1y0
9z7ZeaXspL20i/rZ1clxfcOdpwr+PJU/Z+X2fRL2fZw/t5mnxN+Lz19i2gsf
c/ifu/y9z8V6CHyCOO2F3y89PPe4InU+vNPMG81z4f/39iE1t34u/Alxngvv
Jj0896gidTj8trfHmufCD7zjDPNceGtxngu/S3p47plF6mT4qen+V+G58LZ3
32CeC28nznPhfaSH57YvUsfCX0z3VQvPhb/16QPmufD3xXku/BXp4bndi9SZ
8Inpfn3hufB3e001z4XPE+e58EnSE+fdRerA+HvH6TmQwnPhXRr+1zwX3lM8
1qXitaSH544oUqfF3yl2z4X758L9c+H+ub2K1FFw72e49zPc+xnu/XxskToH
7vsV3PcruO9XcN+v+hapQ+B+HMH9OIL7cQT34ygUqRPgPm7AfdyA+7gB93Gj
W5E8DvdxEu7jJNzHSbiPk6cXybNwnxfgPi/AfV6AkxfQH+8d6LyEnafUTzrq
fAXyrM8M0XkS5OETdP4EedY9huu8DfLw83Q+B3nWE+rqPBLy8Gd1fgl55ukt
dV4LefgVOt+FPPPf5TrPhjz8VZ1/Q555ZUOd90Mefo3OByLPfM3rh3v9zIO8
/XBvP/ML7x+49w91u/c/3Pufeti/X7h/v/Heges/cPpPjJ+u/rHz08K5ffrz
Z+7cCP2Z8yfUdXD2d549Ym7K0d+lyDrhMe4cO899v9xzIzVKOH9C/QxnP2jI
sGXmuUe6+seunxTOk/PcIeWeD6lRwjkT5iNw9o8GL1pjntu7yDrbie5ct40b
/rxHjRLOjTC/g7PfNCk9F1R4bnD1D/xid76a5+bKPb9Ro4RzIMyX4dofyf/+
6Z/muZ1d/WOfWzjnzHOPKfc8xpb6SutvrD/A2c8afe1267d+7jGu/oHf0HhQ
oxfq3/U6543tuUR/vqJGCec0WM+B99f+V4/DtzfPvc/VP669Od9e1p3seYkt
9YbWr1gfg2t/LXdM7UrmuWe4+se935x/v+eUe/6hRsl5Wl9ivRGu/cHcxZU2
2/Hr6h9736dwDtbOU/x5hholnItg/RbOftz76X564bn9iqxjDHLnUeO5lHLP
J9Qo4ZwD6+Fw9u9OOWSdeW6Jq39cvAo+Xs0s97xBjRLOLbC/AGe/r/7Fy81z
uxdZBzjRnc/kufPKPT9Qo4RzCOzXwNkf3GHWfLNuwPnDpxW3ySOfun037OlZ
5J6X9CeVnX7OGV6u+OzWVbbZt3rX7Vu59ia0Fz7HcdrL+QHai/0dXN7BTr2X
pI7eC5zzhIMU59161zb7U4Pd/pTrJwn9BJ44jv2cW/D95EKXv7CT8wYnqj/D
OWc4UfkCOy8osg91ktuHwk7kGV9xfuE49nNewo+vbi4PYifnHGYrDsA5f7hJ
eQc7uxbZb2rj9puwE3niUjy/7Tj2c07Dx6XzXD7FTs5XXKT4CW+h/HWb8pdb
t99mX+kIt6/k4nmeeA4/1fG4TiJ7fDw/3eVlO68szXeobfePZui8YtfD7f7R
CUX2jzjHyP6Ly4N58mCsQxyP8zXZ4/PgkJcvnXX6sFXxPlFct9R5EuyED1E+
pV12HrTtPhHnG29ydiJf37VrhuOxLtV5GF8/jHB1gl2X25Cjn8A530i/cvuP
2+wHXeT2g1zdlRvs+lUPx7Gfczi+7hrq6g3s5PwM4xTOuUfGtV1v3Hbfp6fb
97HrkBXCPW5cd3Ac+4fLHl+v9nJ1C3Zyboc4Cec8JHHVrg9vu78z0O3v2HXj
HcJIF1fPchz7OXfk6/zLXf2DnZwXIk/BOW9JXsPOK4rs47zt9nGwE/ng8to1
jmM/5538/OhYV0dhp+ZxgToBzjlM6gp3vmWb/Zr5br/GzSvDbFdXfOg49nPO
ys8rT3b1GHZyPsrXUYvc/gvPhTdw/HPHsYfzWsyvnZ7E63nPzaPj/Ts3z415
xM1D4/l5N0+El7h5XMynbp4F7+PmQbFud/OUuB7u5hHx/q+r8+FvuToc/rGr
k3kvXxY5b8b+Eftc6EHenoOtVPKF4+xbUX8+rfPD8Kru3g165hapb2cUqRv7
FanHOhepc/oUqR86FcnLE4rkuy5F8khJkfjcp0jcu8rFDfb1iAPePx+4cYo/
d3TycOY73v+sj+2pe3NuvWub8bjUnX9m35P9vr479jD7v5Hr+/k8l3Vdnose
9u+absyZ/XH4C/puP/Lsu52/ooo5JwB/Rb8jgHzcX/vkCSMPf0K/a4A8+1z3
v9/EnBuBl+p3FpBnf+rGty428vBT9LsPyLOv9Et+gpGHT9DvUCDPfpCXh5/m
5NnH8fbAj3b2sP/i2wtf4tob91mcP+GTnD/Z7/DvC/6ye1/sU/j+EL9jqf4Q
/ab9hbPV3+Bnue+oOPnkFCfPOnA7nVuIfisi37OIPOdCH3Z2st47R+c94F2K
yHcoIs/5zKnyG5x13Yt0TgZ+ZBH5C4vIc07ybr1H658qydE6XwTvXUS+WxF5
zit+qn4FZ532Ep3Liv2kiPx5ReQ5N9hJ/dzq/z4/VOfZ4J2LyJ9eRJ7zezdr
3MFLmmTrrjV1DjC2t4j81ZrHeXnO0XV28qyv9nL23FdEfkQRec6ztS7XP3/m
znb+PKOI/NAi8pwre8e9L9ZLj3T9oUsR+V5F5Dnfdavrb6yL9nP9uV8R+cuL
yHPOarIbL6x/vu/GY0kR+WOLyHPe6UE33lnnPMrFk+5F5E8uIs/5opPKj4fB
x8PeTp56Xvetkn+2SMx8hO/I5fd7K+XcOyDvX6h6gLqd8/8HSA/y5Pd/KM7D
yeODlC/g5OsS5R04eXmS8hec/HuL8iCcPPuH8imcfOo5edPrIT/655IHvZ3k
O98u8hp+iHWC3gv1Ff7nnhrvhbp9mTvPxvs927336Afp9++Le3P+Pgjn03iP
9hxmgzBD/cF9TyAZVf48Ivh5xFI3j3D3+xLu91En09969QvmXNz92p/9+d4T
0u8J8F0CnQ9MSi5Y0+m+gV9Hjvwj+p6AO6eXcL8PefgB1a08dYK/F0Nd8YD7
3lp13Ss5/uf1xp7b3XcG0MN4+Vj7I8jDq957lZH3+872vkDtZC+tP6DnL91P
mTjrJ2OPzqMmI/SdAfTE7+Rrnwj5WJ/3sfLUIZxftefhC+v56Pla9zgaL/rF
2LNU+8Jv6HsC6CE+zNZ+GfLwrn2tvN+ntu+rSnKH1sfQM0v3L5bs95uxZ4b2
i4fpuwHoIS5drH1D5OM5uiesPHUO57Hhfv8aPT11b2JBUmbs6eK+D4CeGA+1
f4o8fOp+Vp66iHPv1p7v84nWb9FzqO47bH//78aertpfvvsnq584XF/7yMjD
915j5amjuF8AZ797VFurZ4juKQx+0drTSfvO38y3+on/3h64t4e6y9tDneb9
c7LuF9TfxdrTx93rj/GEvOPeF9y/L+q08t9XYb0aPdxT+OUZ25/fd/f30UO+
8/05nt9z/Zm6zvdn6kA/vpbrPH+tuzYZe1a5e/roIc/68Q73493vp9t7K4X1
ZPQM1zn8fi9uNPbo3ly4Qvfx4/jl9xpcPIzzXxcPqRt9PKTO9PF5tM7P/7Tr
D8Ye3U8MF+rePXqoK3y+gPt84fffXf4K5C/u13NvlPv1cJ8fqRPI79QJ3Pdf
6vI7PP7+i77/wzoS+k+1eT+ev8rpO0LwCa4ewE7udfK9Ajj5tIrzT0+Xx+N3
/3SPku8zwMmD/dx77+DyL/LcW6Sfw8lfx7n+7PfBkeeeIOM3fjemSN7p5vKd
fY+/5olL8GL5wu8L2++4rsjzfRU4cf4fa8rLC4X8Yr/ftSjH92TgxGevh31S
8gLy3PMiP8bvwBSJqyNcPEeee1V8LwheLB76fUPkVc8Evo8EJ475997LxU/k
uTfE96DgxB/fD/0+GvLc06H+hBM3/Lg41sUr6nb2dx604zeeH/Z1u8ZvOMqO
X+7LBz9+uV/Dd8Biv5J+4o+9j9wgMG8lHnKf6I1krYmru7vvh8T+6b77EesW
91zkT3bxk/jGPhfxzcXD4OY7Ub+Pe+yL+bh3n/Ob+45Kcl2PnoYzP6pTKZPH
ftZRR+k+Ee9X+0oJ34FBD/Gz+SvtzPvlfNTCt+37ZR40r89J5vtvzB93Gf5j
qh8/Y/+QrqXmfbG/8P4FV6b+h/PcsZXsPItz46vHXm3kOQe16o8fjTznxm/d
NMzI6xxdcnkbO0/h3PiLD11v5OfqXM2R03418pwbP+eGG438+TrHkhti63zO
jd//yAgjf6bOjQwbauvMbD3gkyNOrjTSyA/XuZGf3rDynBv3+oPORTzWwcpz
btzbP0TnEO6qbu3n3Lj3T/x+yK7WP5wb9/7XOeRQt9/PRp5z4/79sr/27EZb
R7Ev5vsP+9o3zv4+lad/an858J1Afr9P8snsD7PfrZuQ/l5Go8g/26/lo7fU
XxzGZRz9yTJx9LB/fdnmzkZP/L2qi9oYPfAh4vwuBnzF9Oz3JvgdCub1I69c
k3KeC7/96+PMc6N81SPNc6O8OM+F32L1l3j92HO26pxTVq419sCvuqibsQde
/69c+lx+9wTO7928leqvFXmTbt9s0f9D/P1NOL+Hno2TVW/Ap2vdmN/NhPM7
pG9m+kvg+0k/v3sC5/fg8Bu8sezHb/DTrB9KvB/wG/Ver4rrjN/ghz/cvZz+
UynZp0c74zf4Q+/cZvwGX5z2n4Lf4KdXPtH4DT6/4oxvpvxWrT1+g18nefwG
XyX9+A3+iOyx/bxScpDst/28UtLb+qHE+8H2t7L8bfPWldPfyvLzh/cop7+V
5aeXtS+nv5XlG797Rzn9rSzfM32PP8TfFYVXT/tDpRLbD8vyQxpfXk4/LMs3
2+75E794vml72w/L8vdLnt8hhTeSfts/y/K9ZY/tn2X55rLf9s+yfF7ttf2z
LD/G+q3E+836uTRf2m29iT8V9Hf1sPXl+L80X1L1+FQPHPmRbY8v572U5t+p
cHRqJxz5nuccXc77Ks1P+Gt0Oe+rND8qbZd/X6X53VL/+PdVmt88/uZy3ldp
/pSKLW9rsKmDe1+l+Wb33lzO+yrN7yf99n2V5u+SPfZ9leYnyX77vkrzH8kP
cPzQS36w77E0v07vBY78dfa9lBR5L1Ge9+Lee4737t5vDj3uPebecfbDaZez
P7euW7l2Rv1uvOduL3+85xaUP95zjHc3LnJFxkWuyLiI+l3cDkXidigStwNx
28XDUCQehiLxMJQfD6uFU8vPv2Fo+fk3FMm/oUj+DUXybyiSf8Mr5effUCT/
hiL5NxTJv6FJ+fk3nF5+/o1+cHVUKFJHhSJ1VKCOwm/wJ08cafwGv+nWr4zf
4LVXr/lla7/Bf356uzc/avtT9Bu8teTxG/xO6cdv8Gdlj6v3QpF6LxSp94Kv
96ifv1Jd6ureUKTuDdS9tm6pE1qtHF5O3VInPH7T5yaew/sPONHEc/jqZY/9
sm09UycsffWFp/56urSdrWfqhB2/yuSJ5/Ch0m/rnDrhedlj65w64UjZ7+r5
UKSeDyut30q83/Az85c3n/k2lXfzkcB8BH/CX518tfEnfGS7j40/4Y9ckjP+
hO9zWE/jT/get+7SvtWtK6M/4Z0ljz/hL0k//oSPkT34Ez5D9rt5VmCehT/h
M+Uf/Al/V/O4jefv1rV558ZxHnfGPfXe/3LzZ6HaY3XWdhq3a+R/dhxa/eRx
K0LT9Hf9ot+SQ7676ekWe24IA9LfR9sh8gkbOjareUfFkv3S31P7Db8l/1r/
xsqLa+9RUpa2a3bkJQ9OvPnwTp+0W5P+/mDlOH9cPX9E5Qcmbqkn0t9Bqxn5
4CUvPfl7nZ9Cl8tr1x3XPPonaXfS3H3a/7QqtGy96xWDvtg98obX7vH1vnct
CXf9UWNA8/f3iPzgdb3P3LFkQahyZs2G4x6L/klOPHvsIwvGfhD6Z7/7Fuen
jTdcs6Vdy8Nnk+rvMK757nEeuuGC2o0/qLo0ZHbuEfnP64a1eemUheEz/Q4j
/NUJg7s2fvzDcHXl+g9NG9Qwzh9v+u/2p190w5fh0PNq/NVpi5/g77fo3KVi
10/C5Hd2eXba93tGfsCksx6qVWtOqKzfkWQ+NWt0vT492n0arr56l187jdsz
8r4d6jRd1WZumHxfg+ZfTGsS5xE15y0fNKn1otDlgF3af9F6z8jPmzX7P9PO
nhd21+9OUg8nfx457uijPw4zXd17leqr+1292l112rMaj/DtBma/tztL4xE+
ONXzQ3hJ4xFedtGYdLy8ofEIX5dyjccZP7wBr61zaPdrPMLbDczk/6PxCG8w
MNP/usYjfITseULjEV5T9o91dWkftfdNV3/eIP+0dHXmzaozf9Z4pN7b57yr
727b7POwk8Yj/MbbbkvHYzONR/jjdf+djsdBGo/w23YZlY7HQzQe4dc+PG7V
3+PxsOrZeIRXm/vHzHbz927/rcYjfNNba9PxeKbGI7xZ7cXpeOys8Qif9/iq
dDy20HiE93jh0HQ83qnxCB9d+ure/c5ZECprPMIP/arifQNnfhAu1Hik/hyb
tmt5+FTjEb6m2R5mPMKHl41Mx+MijUf4FXu+1CB892EYqvFIPXlxn+rpeDxE
4xF+/Y3d0vH4pMYjfNyyc8sbj+GVk+qXNx7D3HV2PFJXdO28zIxH+CUHvp2O
x9lpv/qB/J5MvrvdpRVuaFPy77QfrqWOSm7bv/WBDywOJS+n8supl5Ldhh5z
UYUbepV8kPbn1XG9KL9uw88TJ3YoedHx7ddn/PaMx/WiLuKPOF5J/BXZQzx5
bXKFQ/62JxvvyyN/OLW/V8lDsjOub4zLeDa+1kbefEqmZ778QFw67/5GV/7t
hzcyHtcTXhQ/VOfEmPet1PerZ1o9uTskn433RejJ1UvbdW7JRNuusFztet3a
H9aqXc7PoYifQxE/hyJ+Dt7P9JMBeu/4Gf7mVdl7f8j2h3Cq+gN+hn8iPQtt
fwu3qb+9KT/Dl4jn1S7y6SP3P/Tj33ZOkP3wb8WRpz8/dNian7aWh38tfk/7
Wkd+Ma1uXL+d1uGw1u1/+jZcl46v7SJv/clLTVa12Tnqh59wUtWft34u/Xa2
3gvPRf4+yU9w/Xwn+X/7dLxvjvKryl7t3aNdvZKsTtgp5utFd/za6IOqfyj+
1In8zU3nbqkH1oQ22f5UXNd9Q+c6Wjv+tvgk/c41/MX2Bz369+9c3+f4m+Lv
pu+rYuR1ktlb8lEt9f8C30PcvpdKyeXzH/1l2/dSKZkuPj3TE+uNVtLzpuP7
io/J7Ix8nuy8x/FZ4gdr/w4+V35o4fi74hPUT7BzZNN2aT/5InsvkX+b1m9/
hJHqP/CpR/6c9p/s93k3Rz+sGPJz+n5t/ynLLz2k+aZt+0lZfo9DM77poKyf
oOdP6cnywnax7pqj585X/4H/ITsXqv/AZ6X15Jpg7SnNb1/zsnLsKc13Ekee
OuTbtI4qyMP3Hzhm07bjpTRXRH8O/Rv0++zEz+4vHp7+nngrne+Fz9b9NefP
XBF/5vDnPfrddvi7aT9pUNLE/N56Wa52tU3p761fk/q5duQf/PXgTQ8//324
x/aTMFr9ZJjtD2GW3osbF4Fx4eJJ8PEE+eluHCFPPKl6sOkn4Tv1k8W2P4S1
6g+f2f4QXlN/cPEkFIknoUg8CUXiSSgST0KReBJ8PCG/nOjiKpx46+JJKBJP
QpF4EorEk1AknoQi8ST4eIKdzynvEE/gcxTnR9p8FPZUPiKewD9XvnB5MEwq
Pw+G5eLEE/RslB7iCfxoPXe+zUdhhexcaPNRmK185PJ4eLT8PB7I426/OK4z
uPWWZITWN9y6RzJa3K13Jax3uXWn5Dlxt66YjNS6H+s58DN375fO71iHgV8s
7tYPE9YP33Lz0ys0H3zTzROHi7v9lxz7L24fJMc+iNtfy51Q/v5ajv01ty+W
K7IvlusjPW7fMyzRvqRdP6wUDk7X6yq5db9KoUTc7W+Gb6TnMMUT3uOYEQem
4+UBxQ34r/9XKR13sxQf4FPGXpaO39c0ruF58bEav/Ad/53pOVTjFD5Rz8Ue
+smPgw4z9sBLZ9Q19sBbTLrH2APvJI498N+lB3vgf+m52EO/eqZCMJy6JVGc
wU7kP+26V6r/AVfXTVccw37kn536XGrnLFfX7aY4SbuQf1vyr7k67QDJ017k
v5U9Y12d9r7swQ/Iv6r2HurqtA/UXvu+KiWD0vVe/74qJRek68b+fVVKqg74
vJz3VSnZXdy+r0rJNdJj31el5Go9176Xsvxl6f7Id87/Zfma6T5LwR74ql2/
KcefZfnfxK3fyvLNpMf6pyx/nZ5r7SnNzxneoxx7SvMvpPt33p7S/EvvrS3H
ntL8e+LWntL8W9Jj7SnNL9ZzsSfGPZ1HxR54l3QdrGAP/NI0ThbsgY8Sxx54
b+nBHvjteq7zT66If3JF/JMr4p9cEf/kivgnt8T5hzhcpP/kivSfXJH+kyvS
f3JF+k9uuOs/cV2r3H5eLfj4gzzjzsWf4OMP8oxHF3+Cjz/I7+7GL/I+/iDP
+HXxJ/j4E+XVXhd/go8/1D/EZxeHA3HYxdvwrIufcOKqi5+B+OniZHjV5QXq
vZ/Kz19hTfn5KxTJX6FI/gp/lJ+/gs9fcX+q/PweiuT3UCS/hyL5PRTJ74H8
vjirV2P9sFvb49N69SvV4fAvzp6X1rdXqh6Gj59xWloPL5Ee8tSLqnubaF0d
/t2Hd6fr6sttnZ/MVP3cX+vt8N+690vX2y+3dXjSS3X4OVo/h3/09ux0/XyC
i58nKO7lXZy8XnHyc9lP/Llv/6tS+5mPwL9O18P/CMwL4Nl+0M7ud7FLc0fr
u2rDs/lyjEt5zZevcfwj8X2zeXfkZTtm8+49HK+l+fi/zL3astwyrQNUSOdH
u0T+++0zDv/69Y2hmuPrxZfKD4z3ZzT/baz3CG/4/gPpe1xp13/CZ5pHn6/3
CG+a7vdVLLnUrs+E1VoH6Kv3CO8xa0H6HvtlPPbD87RfeaL9rlTyhL77tDHb
Z4l8AfuemT2x3z6mfdVPNY+Dr1c/b5i1N/K22p/9VPM7eHONl/NlJ/1whvrh
JtkDb7rrq6k9Z8geeNUeWT9voOfCf9B4YV+Pem93nWOZ4fie4i+a+U61ZP/H
Lk/nHVMdby0+2cyDqiVHir/hzq/+S/rzju8t3sz2k6SO+sm58g+8q97vINtP
krrqJz/Ib/D3nl6S+u1c+Q2+p+TPtP0n6SX9jeRPeCPZ48ZdnvUrN07zM8Rr
Z+OlUJdqvFR3fK14MztO89U1Tvdx/C+N66PsOl7+efN7VQU+Q7yFHe/5D8QP
cHyJ+K52HS/fXPY0dry++A42PuQ3qF3bOf6b+BC7HphfZONb5HPEG9v91vxU
7bd+YeNwfrTicH/1H/jO2iftaX6XpzTfXvH2fLtvmx+vfduVNp7nP1Y8ZxyR
F4Zq/eFX9UPkF2jf9mm3n76D9rsvtXkhf43yQh/1W/gjsod1SPg3sqev3RfO
N1B7p7h99up67mhX55+rfEc8Qc/L8jPrnPCJ8nPi1mGukR8OdvOFsZovnGvf
S66+7Oxl30uutd7LD9afuRXy57nWP7n75Z/51j+5jfJPI9uu3LNq10Lbrtyj
alddO05zK9Rvc279fKrGS3237r2fxoXr57nF6s/9bXwLHRR/frVxLLyiONbH
xrFwoOJYAxuvwl6KVy7+hyLxPxSJ/6FI/A9F4n8oEv9DkfgffPynDl+p/HWu
zY/hXeXHQbbeCxtU7/1g82b4l/LmuTZvhr8kf6atA8NC6W9k82lYK3uuVpyn
Pl88YHj6Hq93/B3xeuo/8NNfeDTtPzs6PkBc+yaRN58yLe0//3S8iniJ+iF8
ir7j90/Fc/gK8brqn/F8oPTs4XgT8Z0Ut+P5Rtm5+SDLrxK/Uv0cvkp+uNbx
j8Ub2/NsoZXqpaV2fhFqq17qb+u6cJbqun72/FuYpDptlZ2PhAWq036z9V54
T/XeYDtPCY9pntLb1oHhaelfYuvAsFr6+9rzcmGA7NzN1ofhKLX3M1sfhsZq
rzsPmXAe0p1jTF4Uf87llwqK84+7+F9L3N1HyHEfwd0jyHGPQOfo4jot5+ga
6XwaPKuXPnbr59WSgxQfHnd1Y4m4Ww9PDip/PTxhPdzpD0X0B6+fcV1kPyKw
H7HYtjf817Y38sZqb1a37Bn71fa9x2/p53Pi+T3km0p+sT2XGPVLT4nX4/Qn
cHc+NuF8bB3tc8H7n3Nquj+V9YJ4bjZppnOzn+i8Cnyvc18+6+9zKc6ebZ7L
e/+m/HPOyRc65+zOmSecM9/N7scl72kfrbnOy8HHXbxXel4O/XDOpS+1522S
4Tpvs0jnXeGLX6g8+PiqK6I9jItfdY5xhlsvvVbzfZ4L30vnG591+/httF/v
7vXkuNfD/iP8ufR8WuG9wE/TfR/OEcGHpOejevl7XjnueT2Z7ctH/rj25e91
/D1x+9yyXFPdC/slO38V5Uevy85fPev4lv+84cEt3N3jC711L293e34jzNF+
ejO9X/huQwab9wufq3t/K+25tXCCzne9qfcLf/WC1TXntfyzXd+Mx/NOh+uc
81Sdv4K/qX5+lOTpJwvVTzJ7NsT7mw/yPdLq5rnJAXruOOmBtxB/zfotv0Xp
Kw9s8Vup4/fKzwPs+bco/4DjTXQuDj9Qnz+uc6Qrbf/J76v+01R2wh+VPOfo
4DMlf7M7lzJM/Xyi1ZPbQXoesnpyu0zM9JzpzvXRf3azfguJ/Ob8H8Y5/xO3
b9X7+j/7HsMI8f/Iz8TbLUr3+duflapbPrpyje/+9mdP2enlX3K8XpVM/nl7
rj5cp/622sbVsLFv1t92s/0zXCX5vO2f4U71T52Tj/Gfc/JTsnOwkV88fdqS
kx/6KLh7EAn3IOpl4y7yjroXsFnnGeAjlS/c/ZRkB91PcfeAklaK5zWlHz5V
cfs1ez8rmaz7VofYOJBUVhy438ar/AzFq8ccnyLezJ6vzt+p89W723ibf0Dx
Fvvpzw11Ln2y4zXFp7l14LuUF9x9zBz3MRvLD/B7ZQ/nRuAfOHsYFxMVz290
56xK1V53DzpwD7qGngs/VP50/g/e//Eemd7XOPmZfn5495sf+fu5TzleXXwH
2z/D8eqfk23/DJepf+5h76eEw9QPG9m6JfRWP9zB3hPx+ku8/imWx3Fxd3bu
PY6XA3QPxd1vSrjf1DU7Bx75Vct3GP366rn+flDC/aCx2TmlyIfstF96Tsnd
A0rGzcnO57h7W8kRurfl7s0l3Ju7S/rjurHOQXXV+X/4a/9enJ7/3z31c4NY
bzdI1yWWab5Z4LXFh9lz+Mn5Ooe/2J7zz6/UOf/D7P2C/LG6X4D9jJfquq/h
7h3nuHd8t9oF/33pMWm73L3y3D90rzy7r1Qv8l4637je8R7i+p5PXCdpou9Z
ue8DhEf1fYAxsgd+n84l4mf4xuVfl+fnUMTPwfuZcTdc94+W2PtNoVT3m9pk
fo79sI7uVbl7dgn37HpkdkbeRvezxuscHXyg+qe7v5bMUP8/Tvcg4Fer/2f7
XLvH+eD/ZKe7R5m0VH++Lmtv3NcYpva6+6oJ91WPl/3wF9Sf98z8GeeVO8qf
TR2vKf6U9MPr6N7uEybeVks+Ujx8wvS3aklDyd8g+xkXZ2pcdJOd8J/UHxrb
OJw0VRzubPtP8rvkv5Q/GV9LNb422nO8+Y7qz+58b76r+E02X+RXKF+MdfxD
8XV2vOSPl561jp8ifoT6IeO9RON9vLt3drL7TgK8suJAT/kNPYnuK3EeGP6b
4sBTTs+O0tPWnYe5RuvMNWz+zT+p/Mv5Xvg05d+u9v5U/j3Zc6eNS/ntv8zs
Ocz6IddJfnDfhcjxXYhutr25d6V/gm1vboPau9j2hxzx1n0nJMd3Qlw/yR2j
9zXM9ttAPHffaQl8p6Wn7c9hjfqnG3ehyLgLRcZdKDLuQpFxF/y4I04OUdzo
ZuNDmK740NjWn2GS6pnONj+GGZJfZuNYWK449rP8Cb9gu39unV8iv1J8uMYX
vI/qogmOHyiu8Vu4Zy09pY5fL97N1iHhcsXhI2xeCDsrL/S08T+0VPwfZ+N/
uFTxv7qdF4Seqsd2ONjMC8JVqscOs/d8Qz09t5u9FxyO0nPH2LooXKvn3m3v
BQfqsa4274Qr1V53Pz15uEqXtI7K1l33iHmnW7qfstB/HyAZlc/uuTdWXiav
tb5wddpv4cgP2rDWcPJR32t/NJx8Uc/2/wJXf7b6KyU33FKWylfN7plGfvCw
zU2aXbvC6d8y39nhz1Q+O5+wW+RvvTCk4+Q+y8N5jufFrZ7S/Ngxf6V6Kum5
8Gd6bNd06+cSV1vW31xOe0tzd0uPszOHna69gfY6v4Uifgveb4xf/I/f4Dc8
8pvxG+PoYr3Hs+Qf+OXjB6b+6ef4AHHXTwL9BL/B99z3h/S559l+GLqoH2br
fk3juOu566uHf/36J+EeOx8J9x7zXKW2hy4ILbJ7r5G/tNP9Exov2UZPgp71
+v4h/Eh9v3Fv3buED5jVN/0+f2O7jp001Lr0CfZ7dMn/6Xt0L9j7hkmZ7hsy
P2JcnK97ss9l92ojb697te/Y74sm1+n7okPt/cdko+4/Xqt1b8bRO7q3W0N+
gD+je75Pab7JOLpN94JbyZ/wIbpHzDo/42Wg7iPzHuFX6v7ycfquJnzBvGeu
X7P/Z6Gq5r+Mo/11b3qc3i98hO5Zf5/dN4/jroXum6/V9zbhm86ZsPCAzz8O
G/R+GXc/iO9l79Xmqp2T3attovfLeHxV3w04wXwPsyw3W/Y/Y+/t5pboHi55
h/HbR98leF7vF15Z3zGYbb8bHBpqnnWZvUccjtM9Yvd+w+kdyn2/4TV9V4H3
y3j/h77DwPuFz9R3G3hfjMfzWz6etjc7P/NT3O9oqXHRURz/v6x7ylPdfkFT
rQt1tnpCPenhvBn9+Vb93v3n9rxc8orOy3H+AT5Bv+t9t52HJndqHlrNnU9Y
p/MJn9lzleE1nas8zdoTrpc94+x6QnhV6wnH6Vwi/nlJ5+XW6rsEtKul9tk7
SR4+Ufpbufqc35kd786fnKzzJ63cuUTuJ67Tc+M+gs5FdNRz4S/Kb8N1/wv7
r9B+7iNu/7Gj9gdXW/3Jl9L/f+5c6NGy81rpp5+cpnM777n9o4u0TrjOfs8h
/63OsRxrz3/mj9e5l5FWf65E+p39wdvPe2yn99LCnROYo/MAh7lzAjPEr7F+
CyPltw32+zBhqfbNj7H9JLyhfvJU+rcg7pv8W+v22//tlE1vbfOdECcfJki+
is2zSaVjs+/hnGvztc71LQ95u86TLNPvazzl1qOYP7Z055T4vndVWxflbtV3
P/rZ+ip3r76DwXPx/4X6zv8Gxfl4HlXf+flecR4elK/72e9s5CdIf1X7HZL8
zbLnPPudnIAffrDfFwp97XMj5zvPVe13h0IF+fl7a3+4QHrWWvtDe+nhO7fY
yXeD+Z427V3cocLIZO7X/vdeE37v9TAXn49WXHXf0U36f3PFVr8LUPDzkk3H
Tb+r2mfuO/Z1ktY35vscM6XwXPi/2i41v38E5/dwZ5p+VSfZ/+Wh5rnwzvc9
luaX4138H6N4iDz8kxefTOX5znbMF6+NS/N7d1NvVEsuPuYpIw//vvZ4I0//
37XHVCMPf7jZvam81VOWf3S14TGOjRyb1Rt8rxjeeN/nUv3x9wv0N6vVyVPa
bvw6vscY//MPvrL1e4zxX9+Rxv6YZ6UfO6MeZw/j9L9znzX2wO+au7Ppb3B+
x9z121yfF0cYe+BffPpsOf4vzW3fL7PHPrcst3beu6a/wUfO2rxu2+eW5Ta+
f2M5zy3LPVH2TDnPLcstWH9vee89XD+h3Pce1h98b3n9KvSfUm6/Cr33tf2K
+HZGi8nl9dtQb9E403/oz3XFeV/w3lZPrOd5rn2/1ZJ+1s5YL9Eu+z3tSskw
+aGVuddTKblc95Jamns3lZIrxK09ZfmF6+8tx56y/GN6L+6957/Xe+e58KG6
F2bvfZTlR6k/YE/58oV5x5x5z5Tjt9I8/dCNi/ziT8sdF/mxGhfWztL8Qt2n
s/aU5j8Rd+MiP31uueMiv1HzFGdnrnxeliP+OD/nPnTtpT//p1m57z3UtXEv
ziOIk65fhYtsXI118i2vldtvwwLFbfwGf0n3yPAb/GVxl48C+cj2zzrhN93/
op/AD1aesv3WyxfmO30138F+8nWfJPudCJeXA3kZe+D36P4Xz4WPF3f5N5B/
W7j1hy7K43Dy5mMVupjfbSQ+HNd7p+lb/44hccD/XjD8fvd7wYzrj1bt/sq2
esryU+tcZH5vkf65XPM+y8tyLzp5+tv8cvVv+7vG8LucnfF7Ea69vMf/k3/4
fcO4z3tl69rhwmrxHhn8btUbNu9US05556Et/WFTsL/PXi057O4baq5qs1OJ
rX8qJUdv7J/qt+0qzX/h/ENevl353f5u47a/R4/fuku/7eeVwpOaxzn7QxH7
g7cff74g/7h6MlBPYg/9s0XndbW2tgf+nOpS+9zS/B6Vbkj1F5vnoh9+w6HT
UjvRD2+S1jmbis5HrD9Lc830XFevhndUr8Jp70FqlxvXCePaxZ/k1/LjT3KQ
4o+Lewlxz+WR3EKTLwr3HI9R3eXyY65IfszdrPzo8nggX7v2Jgeova4/JC+r
P9jn+t9txM/VkqB+Ze3ZUp+oH9p5RKXkEfVb18+TLurnrg7Mj1C7bL8qy7+t
8eLq1Tz1Kpx+0kD9Bz3woepvrv/k91b/ce8l31H6XT/P7e76G+8FO13cCJ3U
XufnUMTPoYifg/cz45r5lIuHYbrer5vfhQNM3iyse7yn8eLiQGhVfhwIzysO
2DqkTjK/Q3vzO0rw4SUZd/EwTzx0egLyTs823M/fyS/0/6o61+3ySEIeQR7+
X53TdvkoIR8hH89R69y1zWuluUN0btnl2Rx51sqX5X6qmJ03dvk6kK+tnZXC
VJ0Hdjx51nH8/LP0OzvzB8pOOOOllvv9dPrVEtde3ss0+c35P1SR/239sO3v
TWM/9YOrN/K+3sD+8uuTbX8nGvupo1zdFai71tl1oYTfTXP1XjLe1YH0H+pP
V/cm1L12nrvt7+fSfz4td95RlrtaeWGmO8flf1cUfqXygntu/B1PN47i7zy6
379L/O/fYb//HT2fR9zvJwb/+4nYU0RPjJPuvcTfs3O/G5Xwu1HOP9v8vjD9
aocHy8rh2/7OF/3H/24p/afnzT+Y37HCn8wv/h/G20Hw
"], {{
{EdgeForm[None], GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJxFnXUYFVXXxe+dudNjKwYm2IqJBYqKnaiAKIoiYStgYIABFrbYhRhYKKhg
d2OjGNgFiiiK3fGtH+u8z/fHPGffM3vOnJk5sXPdFfoN2uPIqNFoXFU0GrHK
bnmj8bqIp7JGY9eq0VhBdUNVt1raaCzUbDTuSBqNrcQ7VOV9daPRajUakY4F
de4vXdNL5R86t5aOXXXtJJ3bRNeurvoXVNdbPF+r/hTRp4reWPfaR+Xq4llY
PBNUf6nuu7x4LlP5YNloLCf6WPVhCR3/ib+NytEqL9KxmK7ZXQ9wvsrFdWyt
vp2gNh5Q36ap3ffE8zr3Ufur6fzzOneMfq+p+p4qn9cxTfSzKs9XeZ6OgnbU
5lkqSx3biB6lstaRqN2l1Z9j1Ic2erZFdayq+qt13VU6Oog+WvxXqlxLxxWq
u1zHSqIPUf1lKlfR8a7u96Hq31F5kOovVd3KOobrd0fV761ysI5VRO+hciX1
P9b569X/jXXvzXTfjVT2Vn1f1ccq99W5m9S3b3Rud13zueijVTdA7+R+lZep
73up/ivVD9fvlXV0EX2r+DcQ3Uf0o6I7it5X9COij1XfrlL7a+v4WNd+ov58
SB91v3aqe0K8F6gfm4t/L32v9VW/guofU/0qietvUzsjxLOO6O7iWVC/59ex
vPg6iGcX1d+j38er3XXUfi+Va6mdJXX+Xp3frfK1w9TGrTo3g/dPH2O/n3nP
qXMLq0z1rJtm/nYrM6ZU/6d4Fgpj518d84fvx3dcQPwdxLeE+Cepzecyf+db
6H/q7z9ONJNjAdHz67hY9Fo6lhLdXjwNldeKZ6XY30hNNF7OPB7vUf2a4mkj
+m7R2+t9ntv0XDpOfVhDvIuoD3+q/gzVNXUso/pM72Npvq/KvXU01XYP/d5P
9B4qe4j/wqbf0aqp59/tan/ZxM81Wnz7qt3L9PslfffOqcfjy/q9ho5O4rlZ
PD30bpdTe++K5wjxP6Jzl4teiX6L51rx3KNn+UX0hapbMXGfr1F9rfo71WZ3
td1N/Tmv6ed8RfXvqL8vqVxO/GuLfwzfO/F3vI776po9xfs799HRWfW3qH68
rpkl+kTVrSueZcXzkOj26uMiOt9O5Qnq5zOqe0/93LDys5yt+o1Sz8Vnde4t
0ReJXkflLuI/VXXPi38H0SfxnUW/Qf/E87B+D8/dThud7xd7HH6p38fp99M6
f6X4t9W9JqnuS/H2T0z/oj5l+n2Q2ql0rx/1+y7Vt1XbC+r4R/Unqf7JyPQd
zCsW3Mh8C4vnX9WfLJ5lMtf/pDaWEB2LPkX1m6j9puifVf9YZPpusW7B2iv6
QdHLZqb/VF0b0X+rze9FT4jd/p3i6dRy/e2if1W7M1mTVXeRrvtC9CC+gfh/
En2R6NV13xminxbPnar/T/RE1d/AuxE9WPQ/aucrxpV4PtYxWnWV7n+reH5U
/QX6/ZLqj1b5l3g7qM3ZjBHV/avfX4ueJnpD1f8l+mvGW2T6hobX+RdZM0U/
z3sUfZZ4ThHP56IHqL7U71dEryt6ROQ+D+SdqM2XWZt1/m1d+5Loq0S/LvpV
0UeofCf1tde3PIbhWbXhPYVrVxN9E+++6We7Xf35Q/RY0V/pmuuZv3re9XWv
X1T/Keunjl+5r87Nn5n+UnU3R+a5WPXj1c7voseIni9z+5+I517x/MZ6ovrF
VP+n6NmMqcg09yszXztcfc8z8w8TfaHaXD32Pnqt+L9hXIl/LV3/vehz+abi
f0z0QeI/WMcw1huVndX/rcTXSeVDjFvmuMb4EP1+gD1F5Wlqu7eOv/V7W/0+
Sdcuq2u3r7z2sgaPFv2G6JbmzQWiX2fpFH2frrtXx7G65m+Vf8VeNwfoHpMZ
j7wf8TXV3q2aa9tU3sveU5t9xDNO9Bzx7KfzB7Ivq1wx9Xp5nc7vpWsvVvmi
rr1VdKRzH4ruiTyhaz/Ttdewzur3zao/Qe13VNsfiH4l97021fk92SdFfy7+
NPN7+1D0GuJfSPVrqjyTuSD6Xx2/p37Px6ncT+feFT1L7Wwn+inWB7X9lq4f
yXtQe/Pp9yDxLCr+cWpnjuhTdG4d1c8V/Y542UB+EH2CeKLM8+hE0bdFrj9f
LInqvxP9NmuC2nlC9Kk6tlA7O6qui8pSz/a8eP8Q3VXHzqrfUuUAtXWUeBdT
+a7afBSZhf1J7eyp41DkJMldz+ja38R/qur20vGnfq+o+z6o8/10bX8dR4pe
hGfXM1+pd/ey7rk/Ywt5ibml9h9A9tHRN/K8W1/t7B9bBpsp+pXUe8cazMfC
csHhKvcNc5A1+oqW1wD2hdX1blfTta+qjy/q9x5BntxIde83LWu+pN/dqWeN
VzvvNS3/zSh8frjKu5CBGLfiSdT+M03Lk7uI/9mwly0aef2ZJv6qZXoZ1ibW
rIb3kg8K162u/hSqf75peeI+9jnxnIYMo3aea1omiFtex9iz2WsWabofE5Eh
Gpat11D9C6p/Q20vomuniH5d9MzCMuapKr8sLJedxjsTzwdNn1tN12+jdu7Q
fW5LLO9czBrIWhrkmG1UP0L1byJn6Nq3m5ZRL1FbP7O26Vl2TrwPfIRsput2
bloOOE88PzJHxHOs6rdW/U/6fX7i9f5blR8V3rtn6lt9WLjtY1R+Wlj+PV7l
k+gSQRb9rPDefaLKLwrLKiNVrq/232pa1vy4sIw8VOX7hesGq3y3sMx5ZOFn
5tnZ75/SsTVyo77vwWqnfdO/2+p532z6mr3Dmk9fHxT/Buz54h8o/rZN/95K
47KT6Pd1/grxjxO9rY79mIM6f0bifWeM6jZijda1Y3Vs1vQ+da3KDXWcLv5N
Vd9H5Sa65mBd+4z6OxNZHTlW5b465qh+pM6PUd21Ojbg+ZGfdGwsejv1Z0uV
nyFPiu7KuBY9StduIf79VW4QnhdZfy+du03ld7r+a537Que+Urmqfq+sYwvW
FPXzBpWb6+gq/hPFP1XnzhPf1uI/QGVf1kPVj9L5I/Vdh4l+QuvDubr2el3X
RUf3xHvjLF3bFdlFde+il6iNG3Vswz6k7zSHOq0VO4tnB9V9rd876DibNR/9
RTzn6vfD4tlR5Tmqfx9ZRX3YXu3055uKZ7bqt1f5gHg6Nqz7TS+CXKzx+V5h
Of0N0cMCD7x35tZ3+us5jqrc/nOq+x79SO1/p/JiXfsLe4/60EvlrYxt9eEq
Pe/NfAcdu6v/uzP+df5XXfONrv1Z5bFq8yr0ALXZnb1Q5x9VO7shS6p+Bu9d
PH+K903VX6pyZ107UOXuia+dyfMmlhF+VXlJYjnuP5U9eQe67+/63a3wGjNF
7WyReqy9hZ6o9vdCzlcf5qQeh5urnJF5nL7N/NNxGLIV+qT4dxB9ufifz71v
bqK2dxXPGaKni+eY2O+f+b9t6rHzic7/oja7if6e9mKPc8bx8XpX16h+Xdac
1GPkI/H8nHrMbK1yN93jTNW9oP7PzjwGP9bva9RGJx3r6fcm6ttBfDv1a00d
K7Enq1xffDuq/m7Gsn4vqXIllZuq3XV03avoOjr2Fs/DOreazi2Hzq6ym3h2
Fc9cne+m40zxvKtz24keKvpV1uncz76B+jg38zefhU6D7qbza+WWh7vGnoc7
IQ8x78SzXuL3eZf4lkKGV7mkymty20b21TN9lHkNf4W5rOM41b8mvpbqb1P9
rmpvSOw5yNz7O/X6s0OQB+5oevwdF3v8sHYje++I3UD16+le66q9dVXehVyh
82ezH/Hedf6HxHLItlyj3zumXtu+TCxD3tr0/ERHuKnpdefuzOv9eeK5nfWE
NVP0lqnXp3dEX6f2usReN3/T3Ouo8gy9w7MS6w0fsF/r6M8aov69J57O4jlT
PD+JXpO1U/QNOv4Qzz4qd9MzzKf6W3XdjTpUNc8OcJOOxUUPUl9e0rVPi+dl
nbxc9Y+oPk8tb6RN820mev2mx+cmotdo2iZ1ua75TWUvlbtjl1L9r/rdO7He
84P6eU5ieW2mypPD/sU+dhRjvun3+5H6sJXoUWrnaB3fqG5nlesklgeQC0YE
uQX55QAdj4n+S/Wn6z2PbXrdfKey/WZhzYtz0QnDe75Fz3m27nezyg7iWRFZ
Qff8XdeObFouXVG/n0IO0n0HIaOgi6g8KzYf8muX1HPrDdbz2HsH+9nSjNeW
589mqefuVPGc1rTMjoh6bmz7S4I8oz4MUDlB99pHdcc3rSPwrbCl6HRjpdLy
1SvM9aZtbHy/2/QMleib2Q91vIJsq/If9NbI57CptJq2q2Rq7HDRk3XxqNh2
k4h9XPRhTcuon1eW314trPNurGMv/b6RNY6xp2e6VPxTm5bhflYbnXVM1u+L
1c9JKj/FHhCZfogxI/o+0U+IvqI0PVM8l4m+V/RTKh/T/Y7U+RVUbsRej2zN
vUq3/aTK83XcJfpxlRtil0Q+Fs8F+n037avcRHX3NK3jr6B+fhBZZ2uq3ddY
68TziOofZy3V7+VEvxfk+JvUpz1Vd6B4Hlf77XRuN5Xf5n6Oq1V/Uen2p6uu
i667X/QLOvej6I0i928pXfdakN1XCrINOnU79VWfZ569a01sHNitVDdRbdai
V1C5vH5/Sr9UVmrnpCAD0ZfhyHjIXuk8U0djV/XhfH2vSj+W17VLq/49+qn2
79Hv+VTfrvQ1XMs4fjTz8z+CLqLyDB0n8A1ULh/7Pdynd7Uoc1/lE+iaOs5m
X1F7CwRb23PooYF+XPQ/kccmc+v0pp9zYdWdI/oBtTMljMmzwrgeFcb2doGH
+0Wso8HG92lk2R36fuQQ5oTKv3K/79v0XBsjs4nnKT13W137RmT9aiHRN0Te
AzYW3+0qn0UeFn0Lzyq6I/ZS8UzQtfeLHsp3wxaoa68La/e4yNeepvstovoJ
kW12t6ocr/I81XcqTT+nNjcofd3ToruInsDYEH1c07o73+bKyDYc9sLVNKdm
NS3XNUrvFR1VflBat/2rsI4xIuwXv+mFlbp+OZ3/Qr9PZS3JvJ6eEmTLDi3b
hdhHL4tsX2JPWkfXfMvaUlgOYY3l+ovV5jL6PUXnN8A2zbzF9qu68WGPnKNy
jbCHXajyxqbn6vziuTjU3x35ebHPLBD73uy156rdiSrf1Hf7VXWbh3mxpcqH
mp6TP+VeG8aJ90ldu6yOhxk3md9dW/Vn09J9eZ7viA+C76v6+3LPreNYEyLf
a3x4z8iZx4i+JvJ3P4n9pvD3XJ+xXbhuLZXzMcaDLF6LPjPsJY8XbmMVdF7d
a3/Rh+peX+v8KoFnPfQB3oP6017XjmjanoCN55SwzgzRt/lY5UIqp5bWWTvE
1lGxOaGzvlZah4U+oLB+D8/tpW0N41lfkft1v+dEn1xapzpF5eGl978jVJ5Q
Wic5UeWppWXuEeibpfWNoSr3LS1f9uH7qM0l1a/7K6/drNujS49dvunZpb8f
7/ac0msfa+CFoh8Vz2jRO5Re01nbLxf9EHI7Y0/0aaq/WPSOrJ+iLxe9u+hL
c/tH9hR9Vm7/TjfRDxb2SWFHZF4xv85U/YWF7Ymni762tH1kjMrvVP9J089+
emH55BfR34v+TPQQ0XPRn0UvVlm2R2cco/Lswjr4n+L5p7BdiPf5W+G5w7v6
vfCc5X0yf5hHbXXtv4XtTrzb2wvbqS8pLW+jJ15f2caOr+qqyn5C7LO8z9vw
/7HWq/6iwvbNM1R/ZWF75SjGWGG7xAGixxS2b55XWtfAl3SNyq8K22f4jrML
23AWUf3JhWWzH0qvv6yxO0S2L2BnQD9kTWR9475dS/vttlLZTuXVTY/1r0S3
/58eonG3oujr1O8x+l67Id+Jv1RfTgw8u5X+jnzPXUv75h5R2T3yeGiva1rY
yiL7YFYrXT6MHSjytdshx8S2L+CH6FV6nDBeepb2Dz6mMo5tb8L+1SGzvekc
9a2n1sCHde5kvnfkscSYWiEK461hmxL17Cs9mEeiH1W5bOTxybPtUZpmzH4Z
2RYG3zqZbUZXpd5LWFtGineV0s/I2F+j9Lxgfhymo0/kOTJa3/0OZEfR54ke
lXqfHFTYxrdz+F7tw/45TPThKrur/lBkRNHb861K+1a3UXmx2pmodjYSfYno
u7Ed8M5EP6fv/KHGw1rq8xK889S2MHxo7K/Y5rDb8e524Xq+BXM5sq2H32tn
tnNdqmt3Kj2XmdO809UafsfYG3lefke1bQBrqjwf+Ts1zwX8Fr1yafkB+RMX
4FKR29yy4ed7vWlZc/1ge98t7MXMNfTk53TRVpH9uVuqrcXEO0nlIfr9qug0
8XheUvTk0mN/28gyBn4QaPx9+JSQ2fArsSexN2Fr5d0yLpA7ng52Wuy1m5du
A/moCHvZi+ioyPKR9RD2A/YFdJA1S9PtxD8u6O/o8bcE3R8bwMPBB40vei3x