forked from Tencent/sqlcipher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto_impl.c
1476 lines (1241 loc) · 55.3 KB
/
crypto_impl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
** SQLCipher
** http://sqlcipher.net
**
** Copyright (c) 2008 - 2013, ZETETIC LLC
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of the ZETETIC LLC nor the
** names of its contributors may be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**
*/
/* BEGIN SQLCIPHER */
#ifdef SQLITE_HAS_CODEC
#include "sqlcipher.h"
#include "crypto.h"
#ifndef OMIT_MEMLOCK
#if defined(__unix__) || defined(__APPLE__) || defined(_AIX)
#include <errno.h>
#include <unistd.h>
#include <sys/resource.h>
#include <sys/mman.h>
#elif defined(_WIN32)
#include <windows.h>
#endif
#endif
static volatile unsigned int default_flags = DEFAULT_CIPHER_FLAGS;
static volatile unsigned char hmac_salt_mask = HMAC_SALT_MASK;
static volatile int default_kdf_iter = PBKDF2_ITER;
static volatile int default_page_size = 4096;
static volatile int default_plaintext_header_sz = 0;
static volatile int default_hmac_algorithm = SQLCIPHER_HMAC_SHA512;
static volatile int default_kdf_algorithm = SQLCIPHER_PBKDF2_HMAC_SHA512;
static volatile int mem_security_on = 1;
static volatile int mem_security_initialized = 0;
static volatile int mem_security_activated = 0;
static volatile unsigned int sqlcipher_activate_count = 0;
static volatile sqlite3_mem_methods default_mem_methods;
static sqlite3_mutex* sqlcipher_provider_mutex = NULL;
static sqlcipher_provider *default_provider = NULL;
/* the default implementation of SQLCipher uses a cipher_ctx
to keep track of read / write state separately. The following
struct and associated functions are defined here */
typedef struct {
int derive_key;
int pass_sz;
unsigned char *key;
unsigned char *hmac_key;
unsigned char *pass;
char *keyspec;
} cipher_ctx;
struct codec_ctx {
int store_pass;
int kdf_iter;
int fast_kdf_iter;
int kdf_salt_sz;
int key_sz;
int iv_sz;
int block_sz;
int page_sz;
int keyspec_sz;
int reserve_sz;
int hmac_sz;
int plaintext_header_sz;
int hmac_algorithm;
int kdf_algorithm;
unsigned int skip_read_hmac;
unsigned int need_kdf_salt;
unsigned int flags;
unsigned char *kdf_salt;
unsigned char *hmac_kdf_salt;
unsigned char *buffer;
Btree *pBt;
cipher_ctx *read_ctx;
cipher_ctx *write_ctx;
sqlcipher_provider *provider;
void *provider_ctx;
};
static int sqlcipher_mem_init(void *pAppData) {
return default_mem_methods.xInit(pAppData);
}
static void sqlcipher_mem_shutdown(void *pAppData) {
default_mem_methods.xShutdown(pAppData);
}
static void *sqlcipher_mem_malloc(int n) {
void *ptr = default_mem_methods.xMalloc(n);
if(mem_security_on) {
CODEC_TRACE("sqlcipher_mem_malloc: calling sqlcipher_mlock(%p,%d)\n", ptr, n);
sqlcipher_mlock(ptr, n);
if(!mem_security_activated) mem_security_activated = 1;
}
return ptr;
}
static int sqlcipher_mem_size(void *p) {
return default_mem_methods.xSize(p);
}
static void sqlcipher_mem_free(void *p) {
int sz;
if(mem_security_on) {
sz = sqlcipher_mem_size(p);
CODEC_TRACE("sqlcipher_mem_free: calling sqlcipher_memset(%p,0,%d) and sqlcipher_munlock(%p, %d) \n", p, sz, p, sz);
sqlcipher_memset(p, 0, sz);
sqlcipher_munlock(p, sz);
if(!mem_security_activated) mem_security_activated = 1;
}
default_mem_methods.xFree(p);
}
static void *sqlcipher_mem_realloc(void *p, int n) {
return default_mem_methods.xRealloc(p, n);
}
static int sqlcipher_mem_roundup(int n) {
return default_mem_methods.xRoundup(n);
}
static sqlite3_mem_methods sqlcipher_mem_methods = {
sqlcipher_mem_malloc,
sqlcipher_mem_free,
sqlcipher_mem_realloc,
sqlcipher_mem_size,
sqlcipher_mem_roundup,
sqlcipher_mem_init,
sqlcipher_mem_shutdown,
0
};
void sqlcipher_init_memmethods() {
if(mem_security_initialized) return;
if(sqlite3_config(SQLITE_CONFIG_GETMALLOC, &default_mem_methods) != SQLITE_OK ||
sqlite3_config(SQLITE_CONFIG_MALLOC, &sqlcipher_mem_methods) != SQLITE_OK) {
mem_security_on = mem_security_activated = 0;
}
mem_security_initialized = 1;
}
int sqlcipher_register_provider(sqlcipher_provider *p) {
CODEC_TRACE_MUTEX("sqlcipher_register_provider: entering sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlite3_mutex_enter(sqlcipher_provider_mutex);
CODEC_TRACE_MUTEX("sqlcipher_register_provider: entered sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
if(default_provider != NULL && default_provider != p) {
/* only free the current registerd provider if it has been initialized
and it isn't a pointer to the same provider passed to the function
(i.e. protect against a caller calling register twice for the same provider) */
sqlcipher_free(default_provider, sizeof(sqlcipher_provider));
}
default_provider = p;
CODEC_TRACE_MUTEX("sqlcipher_register_provider: leaving sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlite3_mutex_leave(sqlcipher_provider_mutex);
CODEC_TRACE_MUTEX("sqlcipher_register_provider: left sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
return SQLITE_OK;
}
/* return a pointer to the currently registered provider. This will
allow an application to fetch the current registered provider and
make minor changes to it */
sqlcipher_provider* sqlcipher_get_provider() {
return default_provider;
}
void sqlcipher_activate() {
CODEC_TRACE_MUTEX("sqlcipher_activate: entering static master mutex\n");
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
CODEC_TRACE_MUTEX("sqlcipher_activate: entered static master mutex\n");
if(sqlcipher_provider_mutex == NULL) {
/* allocate a new mutex to guard access to the provider */
CODEC_TRACE_MUTEX("sqlcipher_activate: allocating sqlcipher provider mutex\n");
sqlcipher_provider_mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
CODEC_TRACE_MUTEX("sqlcipher_activate: allocated sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
}
/* check to see if there is a provider registered at this point
if there no provider registered at this point, register the
default provider */
if(sqlcipher_get_provider() == NULL) {
sqlcipher_provider *p = sqlcipher_malloc(sizeof(sqlcipher_provider));
#if defined (SQLCIPHER_CRYPTO_CC)
extern int sqlcipher_cc_setup(sqlcipher_provider *p);
sqlcipher_cc_setup(p);
#elif defined (SQLCIPHER_CRYPTO_LIBTOMCRYPT)
extern int sqlcipher_ltc_setup(sqlcipher_provider *p);
sqlcipher_ltc_setup(p);
#elif defined (SQLCIPHER_CRYPTO_OPENSSL)
extern int sqlcipher_openssl_setup(sqlcipher_provider *p);
sqlcipher_openssl_setup(p);
#else
#error "NO DEFAULT SQLCIPHER CRYPTO PROVIDER DEFINED"
#endif
CODEC_TRACE("sqlcipher_activate: calling sqlcipher_register_provider(%p)\n", p);
sqlcipher_register_provider(p);
CODEC_TRACE("sqlcipher_activate: called sqlcipher_register_provider(%p)\n",p);
}
sqlcipher_activate_count++; /* increment activation count */
CODEC_TRACE_MUTEX("sqlcipher_activate: leaving static master mutex\n");
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
CODEC_TRACE_MUTEX("sqlcipher_activate: left static master mutex\n");
}
void sqlcipher_deactivate() {
CODEC_TRACE_MUTEX("sqlcipher_deactivate: entering static master mutex\n");
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
CODEC_TRACE_MUTEX("sqlcipher_deactivate: entered static master mutex\n");
sqlcipher_activate_count--;
/* if no connections are using sqlcipher, cleanup globals */
if(sqlcipher_activate_count < 1) {
CODEC_TRACE_MUTEX("sqlcipher_deactivate: entering sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlite3_mutex_enter(sqlcipher_provider_mutex);
CODEC_TRACE_MUTEX("sqlcipher_deactivate: entered sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
if(default_provider != NULL) {
sqlcipher_free(default_provider, sizeof(sqlcipher_provider));
default_provider = NULL;
}
CODEC_TRACE_MUTEX("sqlcipher_deactivate: leaving sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlite3_mutex_leave(sqlcipher_provider_mutex);
CODEC_TRACE_MUTEX("sqlcipher_deactivate: left sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
/* last connection closed, free provider mutex*/
CODEC_TRACE_MUTEX("sqlcipher_deactivate: freeing sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlite3_mutex_free(sqlcipher_provider_mutex);
CODEC_TRACE_MUTEX("sqlcipher_deactivate: freed sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlcipher_provider_mutex = NULL;
sqlcipher_activate_count = 0; /* reset activation count */
}
CODEC_TRACE_MUTEX("sqlcipher_deactivate: leaving static master mutex\n");
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
CODEC_TRACE_MUTEX("sqlcipher_deactivate: left static master mutex\n");
}
/* constant time memset using volitile to avoid having the memset
optimized out by the compiler.
Note: As suggested by Joachim Schipper ([email protected])
*/
void* sqlcipher_memset(void *v, unsigned char value, int len) {
int i = 0;
volatile unsigned char *a = v;
if (v == NULL) return v;
CODEC_TRACE("sqlcipher_memset: setting %p[0-%d]=%d)\n", a, len, value);
for(i = 0; i < len; i++) {
a[i] = value;
}
return v;
}
/* constant time memory check tests every position of a memory segement
matches a single value (i.e. the memory is all zeros)
returns 0 if match, 1 of no match */
int sqlcipher_ismemset(const void *v, unsigned char value, int len) {
const unsigned char *a = v;
int i = 0, result = 0;
for(i = 0; i < len; i++) {
result |= a[i] ^ value;
}
return (result != 0);
}
/* constant time memory comparison routine.
returns 0 if match, 1 if no match */
int sqlcipher_memcmp(const void *v0, const void *v1, int len) {
const unsigned char *a0 = v0, *a1 = v1;
int i = 0, result = 0;
for(i = 0; i < len; i++) {
result |= a0[i] ^ a1[i];
}
return (result != 0);
}
void sqlcipher_mlock(void *ptr, int sz) {
#ifndef OMIT_MEMLOCK
#if defined(__unix__) || defined(__APPLE__)
int rc;
unsigned long pagesize = sysconf(_SC_PAGESIZE);
unsigned long offset = (unsigned long) ptr % pagesize;
if(ptr == NULL || sz == 0) return;
CODEC_TRACE("sqlcipher_mem_lock: calling mlock(%p,%lu); _SC_PAGESIZE=%lu\n", ptr - offset, sz + offset, pagesize);
rc = mlock(ptr - offset, sz + offset);
if(rc!=0) {
CODEC_TRACE("sqlcipher_mem_lock: mlock(%p,%lu) returned %d errno=%d\n", ptr - offset, sz + offset, rc, errno);
}
#elif defined(_WIN32)
#if !(defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP || WINAPI_FAMILY == WINAPI_FAMILY_APP))
int rc;
CODEC_TRACE("sqlcipher_mem_lock: calling VirtualLock(%p,%d)\n", ptr, sz);
rc = VirtualLock(ptr, sz);
if(rc==0) {
CODEC_TRACE("sqlcipher_mem_lock: VirtualLock(%p,%d) returned %d LastError=%d\n", ptr, sz, rc, GetLastError());
}
#endif
#endif
#endif
}
void sqlcipher_munlock(void *ptr, int sz) {
#ifndef OMIT_MEMLOCK
#if defined(__unix__) || defined(__APPLE__)
int rc;
unsigned long pagesize = sysconf(_SC_PAGESIZE);
unsigned long offset = (unsigned long) ptr % pagesize;
if(ptr == NULL || sz == 0) return;
CODEC_TRACE("sqlcipher_mem_unlock: calling munlock(%p,%lu)\n", ptr - offset, sz + offset);
rc = munlock(ptr - offset, sz + offset);
if(rc!=0) {
CODEC_TRACE("sqlcipher_mem_unlock: munlock(%p,%lu) returned %d errno=%d\n", ptr - offset, sz + offset, rc, errno);
}
#elif defined(_WIN32)
#if !(defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP || WINAPI_FAMILY == WINAPI_FAMILY_APP))
int rc;
CODEC_TRACE("sqlcipher_mem_lock: calling VirtualUnlock(%p,%d)\n", ptr, sz);
rc = VirtualUnlock(ptr, sz);
if(!rc) {
CODEC_TRACE("sqlcipher_mem_unlock: VirtualUnlock(%p,%d) returned %d LastError=%d\n", ptr, sz, rc, GetLastError());
}
#endif
#endif
#endif
}
/**
* Free and wipe memory. Uses SQLites internal sqlite3_free so that memory
* can be countend and memory leak detection works in the test suite.
* If ptr is not null memory will be freed.
* If sz is greater than zero, the memory will be overwritten with zero before it is freed
* If sz is > 0, and not compiled with OMIT_MEMLOCK, system will attempt to unlock the
* memory segment so it can be paged
*/
void sqlcipher_free(void *ptr, int sz) {
CODEC_TRACE("sqlcipher_free: calling sqlcipher_memset(%p,0,%d)\n", ptr, sz);
sqlcipher_memset(ptr, 0, sz);
sqlcipher_munlock(ptr, sz);
sqlite3_free(ptr);
}
/**
* allocate memory. Uses sqlite's internall malloc wrapper so memory can be
* reference counted and leak detection works. Unless compiled with OMIT_MEMLOCK
* attempts to lock the memory pages so sensitive information won't be swapped
*/
void* sqlcipher_malloc(int sz) {
void *ptr;
CODEC_TRACE("sqlcipher_malloc: calling sqlite3Malloc(%d)\n", sz);
ptr = sqlite3Malloc(sz);
CODEC_TRACE("sqlcipher_malloc: calling sqlcipher_memset(%p,0,%d)\n", ptr, sz);
sqlcipher_memset(ptr, 0, sz);
sqlcipher_mlock(ptr, sz);
return ptr;
}
/**
* Initialize new cipher_ctx struct. This function will allocate memory
* for the cipher context and for the key
*
* returns SQLITE_OK if initialization was successful
* returns SQLITE_NOMEM if an error occured allocating memory
*/
static int sqlcipher_cipher_ctx_init(codec_ctx *ctx, cipher_ctx **iCtx) {
cipher_ctx *c_ctx;
CODEC_TRACE("sqlcipher_cipher_ctx_init: allocating context\n");
*iCtx = (cipher_ctx *) sqlcipher_malloc(sizeof(cipher_ctx));
c_ctx = *iCtx;
if(c_ctx == NULL) return SQLITE_NOMEM;
CODEC_TRACE("sqlcipher_cipher_ctx_init: allocating key\n");
c_ctx->key = (unsigned char *) sqlcipher_malloc(ctx->key_sz);
CODEC_TRACE("sqlcipher_cipher_ctx_init: allocating hmac_key\n");
c_ctx->hmac_key = (unsigned char *) sqlcipher_malloc(ctx->key_sz);
if(c_ctx->key == NULL) return SQLITE_NOMEM;
if(c_ctx->hmac_key == NULL) return SQLITE_NOMEM;
return SQLITE_OK;
}
/**
* Free and wipe memory associated with a cipher_ctx
*/
static void sqlcipher_cipher_ctx_free(codec_ctx* ctx, cipher_ctx **iCtx) {
cipher_ctx *c_ctx = *iCtx;
CODEC_TRACE("cipher_ctx_free: entered iCtx=%p\n", iCtx);
sqlcipher_free(c_ctx->key, ctx->key_sz);
sqlcipher_free(c_ctx->hmac_key, ctx->key_sz);
sqlcipher_free(c_ctx->pass, c_ctx->pass_sz);
sqlcipher_free(c_ctx->keyspec, ctx->keyspec_sz);
sqlcipher_free(c_ctx, sizeof(cipher_ctx));
}
static int sqlcipher_codec_ctx_reserve_setup(codec_ctx *ctx) {
int base_reserve = ctx->iv_sz; /* base reserve size will be IV only */
int reserve = base_reserve;
ctx->hmac_sz = ctx->provider->get_hmac_sz(ctx->provider_ctx, ctx->hmac_algorithm);
if(sqlcipher_codec_ctx_get_use_hmac(ctx))
reserve += ctx->hmac_sz; /* if reserve will include hmac, update that size */
/* calculate the amount of reserve needed in even increments of the cipher block size */
reserve = ((reserve % ctx->block_sz) == 0) ? reserve :
((reserve / ctx->block_sz) + 1) * ctx->block_sz;
CODEC_TRACE("sqlcipher_codec_ctx_reserve_setup: base_reserve=%d block_sz=%d md_size=%d reserve=%d\n",
base_reserve, ctx->block_sz, ctx->hmac_sz, reserve);
ctx->reserve_sz = reserve;
return SQLITE_OK;
}
/**
* Compare one cipher_ctx to another.
*
* returns 0 if all the parameters (except the derived key data) are the same
* returns 1 otherwise
*/
static int sqlcipher_cipher_ctx_cmp(cipher_ctx *c1, cipher_ctx *c2) {
int are_equal = (
c1->pass_sz == c2->pass_sz
&& (
c1->pass == c2->pass
|| !sqlcipher_memcmp((const unsigned char*)c1->pass,
(const unsigned char*)c2->pass,
c1->pass_sz)
));
CODEC_TRACE("sqlcipher_cipher_ctx_cmp: entered \
c1=%p c2=%p \
c1->pass_sz=%d c2->pass_sz=%d \
c1->pass=%p c2->pass=%p \
c1->pass=%s c2->pass=%s \
sqlcipher_memcmp=%d \
are_equal=%d \
\n",
c1, c2,
c1->pass_sz, c2->pass_sz,
c1->pass, c2->pass,
c1->pass, c2->pass,
(c1->pass == NULL || c2->pass == NULL)
? -1 : sqlcipher_memcmp(
(const unsigned char*)c1->pass,
(const unsigned char*)c2->pass,
c1->pass_sz),
are_equal
);
return !are_equal; /* return 0 if they are the same, 1 otherwise */
}
/**
* Copy one cipher_ctx to another. For instance, assuming that read_ctx is a
* fully initialized context, you could copy it to write_ctx and all yet data
* and pass information across
*
* returns SQLITE_OK if initialization was successful
* returns SQLITE_NOMEM if an error occured allocating memory
*/
static int sqlcipher_cipher_ctx_copy(codec_ctx *ctx, cipher_ctx *target, cipher_ctx *source) {
void *key = target->key;
void *hmac_key = target->hmac_key;
CODEC_TRACE("sqlcipher_cipher_ctx_copy: entered target=%p, source=%p\n", target, source);
sqlcipher_free(target->pass, target->pass_sz);
sqlcipher_free(target->keyspec, ctx->keyspec_sz);
memcpy(target, source, sizeof(cipher_ctx));
target->key = key; //restore pointer to previously allocated key data
memcpy(target->key, source->key, ctx->key_sz);
target->hmac_key = hmac_key; //restore pointer to previously allocated hmac key data
memcpy(target->hmac_key, source->hmac_key, ctx->key_sz);
if(source->pass && source->pass_sz) {
target->pass = sqlcipher_malloc(source->pass_sz);
if(target->pass == NULL) return SQLITE_NOMEM;
memcpy(target->pass, source->pass, source->pass_sz);
}
if(source->keyspec) {
target->keyspec = sqlcipher_malloc(ctx->keyspec_sz);
if(target->keyspec == NULL) return SQLITE_NOMEM;
memcpy(target->keyspec, source->keyspec, ctx->keyspec_sz);
}
return SQLITE_OK;
}
/**
* Set the keyspec for the cipher_ctx
*
* returns SQLITE_OK if assignment was successfull
* returns SQLITE_NOMEM if an error occured allocating memory
*/
static int sqlcipher_cipher_ctx_set_keyspec(codec_ctx *ctx, cipher_ctx *c_ctx, const unsigned char *key) {
/* free, zero existing pointers and size */
sqlcipher_free(c_ctx->keyspec, ctx->keyspec_sz);
c_ctx->keyspec = NULL;
c_ctx->keyspec = sqlcipher_malloc(ctx->keyspec_sz);
if(c_ctx->keyspec == NULL) return SQLITE_NOMEM;
c_ctx->keyspec[0] = 'x';
c_ctx->keyspec[1] = '\'';
cipher_bin2hex(key, ctx->key_sz, c_ctx->keyspec + 2);
cipher_bin2hex(ctx->kdf_salt, ctx->kdf_salt_sz, c_ctx->keyspec + (ctx->key_sz * 2) + 2);
c_ctx->keyspec[ctx->keyspec_sz - 1] = '\'';
return SQLITE_OK;
}
int sqlcipher_codec_get_store_pass(codec_ctx *ctx) {
return ctx->store_pass;
}
void sqlcipher_codec_set_store_pass(codec_ctx *ctx, int value) {
ctx->store_pass = value;
}
void sqlcipher_codec_get_pass(codec_ctx *ctx, void **zKey, int *nKey) {
*zKey = ctx->read_ctx->pass;
*nKey = ctx->read_ctx->pass_sz;
}
static void sqlcipher_set_derive_key(codec_ctx *ctx, int derive) {
if(ctx->read_ctx != NULL) ctx->read_ctx->derive_key = 1;
if(ctx->write_ctx != NULL) ctx->write_ctx->derive_key = 1;
}
/**
* Set the passphrase for the cipher_ctx
*
* returns SQLITE_OK if assignment was successfull
* returns SQLITE_NOMEM if an error occured allocating memory
*/
static int sqlcipher_cipher_ctx_set_pass(cipher_ctx *ctx, const void *zKey, int nKey) {
/* free, zero existing pointers and size */
sqlcipher_free(ctx->pass, ctx->pass_sz);
ctx->pass = NULL;
ctx->pass_sz = 0;
if(zKey && nKey) { /* if new password is provided, copy it */
ctx->pass_sz = nKey;
ctx->pass = sqlcipher_malloc(nKey);
if(ctx->pass == NULL) return SQLITE_NOMEM;
memcpy(ctx->pass, zKey, nKey);
}
return SQLITE_OK;
}
int sqlcipher_codec_ctx_set_pass(codec_ctx *ctx, const void *zKey, int nKey, int for_ctx) {
cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
int rc;
if((rc = sqlcipher_cipher_ctx_set_pass(c_ctx, zKey, nKey)) != SQLITE_OK) return rc;
c_ctx->derive_key = 1;
if(for_ctx == 2)
if((rc = sqlcipher_cipher_ctx_copy(ctx, for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK)
return rc;
return SQLITE_OK;
}
const char* sqlcipher_codec_ctx_get_cipher(codec_ctx *ctx) {
return ctx->provider->get_cipher(ctx->provider_ctx);
}
/* set the global default KDF iteration */
void sqlcipher_set_default_kdf_iter(int iter) {
default_kdf_iter = iter;
}
int sqlcipher_get_default_kdf_iter() {
return default_kdf_iter;
}
int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *ctx, int kdf_iter) {
ctx->kdf_iter = kdf_iter;
sqlcipher_set_derive_key(ctx, 1);
return SQLITE_OK;
}
int sqlcipher_codec_ctx_get_kdf_iter(codec_ctx *ctx) {
return ctx->kdf_iter;
}
int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *ctx, int fast_kdf_iter) {
ctx->fast_kdf_iter = fast_kdf_iter;
sqlcipher_set_derive_key(ctx, 1);
return SQLITE_OK;
}
int sqlcipher_codec_ctx_get_fast_kdf_iter(codec_ctx *ctx) {
return ctx->fast_kdf_iter;
}
/* set the global default flag for HMAC */
void sqlcipher_set_default_use_hmac(int use) {
if(use) default_flags |= CIPHER_FLAG_HMAC;
else default_flags &= ~CIPHER_FLAG_HMAC;
}
int sqlcipher_get_default_use_hmac() {
return (default_flags & CIPHER_FLAG_HMAC) != 0;
}
void sqlcipher_set_hmac_salt_mask(unsigned char mask) {
hmac_salt_mask = mask;
}
unsigned char sqlcipher_get_hmac_salt_mask() {
return hmac_salt_mask;
}
/* set the codec flag for whether this individual database should be using hmac */
int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use) {
if(use) {
sqlcipher_codec_ctx_set_flag(ctx, CIPHER_FLAG_HMAC);
} else {
sqlcipher_codec_ctx_unset_flag(ctx, CIPHER_FLAG_HMAC);
}
return sqlcipher_codec_ctx_reserve_setup(ctx);
}
int sqlcipher_codec_ctx_get_use_hmac(codec_ctx *ctx) {
return (ctx->flags & CIPHER_FLAG_HMAC) != 0;
}
/* the length of plaintext header size must be:
* 1. greater than or equal to zero
* 2. a multiple of the cipher block size
* 3. less than the usable size of the first database page
*/
int sqlcipher_set_default_plaintext_header_size(int size) {
default_plaintext_header_sz = size;
return SQLITE_OK;
}
int sqlcipher_codec_ctx_set_plaintext_header_size(codec_ctx *ctx, int size) {
if(size >= 0 && (size % ctx->block_sz) == 0 && size < (ctx->page_sz - ctx->reserve_sz)) {
ctx->plaintext_header_sz = size;
return SQLITE_OK;
}
return SQLITE_ERROR;
}
int sqlcipher_get_default_plaintext_header_size() {
return default_plaintext_header_sz;
}
int sqlcipher_codec_ctx_get_plaintext_header_size(codec_ctx *ctx) {
return ctx->plaintext_header_sz;
}
/* manipulate HMAC algorithm */
int sqlcipher_set_default_hmac_algorithm(int algorithm) {
default_hmac_algorithm = algorithm;
return SQLITE_OK;
}
int sqlcipher_codec_ctx_set_hmac_algorithm(codec_ctx *ctx, int algorithm) {
ctx->hmac_algorithm = algorithm;
return sqlcipher_codec_ctx_reserve_setup(ctx);
}
int sqlcipher_get_default_hmac_algorithm() {
return default_hmac_algorithm;
}
int sqlcipher_codec_ctx_get_hmac_algorithm(codec_ctx *ctx) {
return ctx->hmac_algorithm;
}
/* manipulate KDF algorithm */
int sqlcipher_set_default_kdf_algorithm(int algorithm) {
default_kdf_algorithm = algorithm;
return SQLITE_OK;
}
int sqlcipher_codec_ctx_set_kdf_algorithm(codec_ctx *ctx, int algorithm) {
ctx->kdf_algorithm = algorithm;
return SQLITE_OK;
}
int sqlcipher_get_default_kdf_algorithm() {
return default_kdf_algorithm;
}
int sqlcipher_codec_ctx_get_kdf_algorithm(codec_ctx *ctx) {
return ctx->kdf_algorithm;
}
int sqlcipher_codec_ctx_set_flag(codec_ctx *ctx, unsigned int flag) {
ctx->flags |= flag;
return SQLITE_OK;
}
int sqlcipher_codec_ctx_unset_flag(codec_ctx *ctx, unsigned int flag) {
ctx->flags &= ~flag;
return SQLITE_OK;
}
int sqlcipher_codec_ctx_get_flag(codec_ctx *ctx, unsigned int flag) {
return (ctx->flags & flag) != 0;
}
void sqlcipher_codec_ctx_set_error(codec_ctx *ctx, int error) {
CODEC_TRACE("sqlcipher_codec_ctx_set_error: ctx=%p, error=%d\n", ctx, error);
sqlite3pager_error(ctx->pBt->pBt->pPager, error);
ctx->pBt->pBt->db->errCode = error;
}
int sqlcipher_codec_ctx_get_reservesize(codec_ctx *ctx) {
return ctx->reserve_sz;
}
void* sqlcipher_codec_ctx_get_data(codec_ctx *ctx) {
return ctx->buffer;
}
int sqlcipher_codec_ctx_set_kdf_salt(codec_ctx *ctx, unsigned char *salt, int size) {
if(size >= ctx->kdf_salt_sz) {
memcpy(ctx->kdf_salt, salt, ctx->kdf_salt_sz);
ctx->need_kdf_salt = 0;
return SQLITE_OK;
}
return SQLITE_ERROR;
}
void* sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx) {
return ctx->kdf_salt;
}
void sqlcipher_codec_get_keyspec(codec_ctx *ctx, void **zKey, int *nKey) {
*zKey = ctx->read_ctx->keyspec;
*nKey = ctx->keyspec_sz;
}
int sqlcipher_codec_ctx_set_pagesize(codec_ctx *ctx, int size) {
if(!((size != 0) && ((size & (size - 1)) == 0)) || size < 512 || size > 65536) {
CODEC_TRACE(("cipher_page_size not a power of 2 and between 512 and 65536 inclusive\n"));
return SQLITE_ERROR;
}
/* attempt to free the existing page buffer */
sqlcipher_free(ctx->buffer,ctx->page_sz);
ctx->page_sz = size;
/* pre-allocate a page buffer of PageSize bytes. This will
be used as a persistent buffer for encryption and decryption
operations to avoid overhead of multiple memory allocations*/
ctx->buffer = sqlcipher_malloc(size);
if(ctx->buffer == NULL) return SQLITE_NOMEM;
return SQLITE_OK;
}
int sqlcipher_codec_ctx_get_pagesize(codec_ctx *ctx) {
return ctx->page_sz;
}
void sqlcipher_set_default_pagesize(int page_size) {
default_page_size = page_size;
}
int sqlcipher_get_default_pagesize() {
return default_page_size;
}
void sqlcipher_set_mem_security(int on) {
mem_security_on = on;
mem_security_activated = 0;
}
int sqlcipher_get_mem_security() {
return mem_security_on && mem_security_activated;
}
int sqlcipher_codec_ctx_init(codec_ctx **iCtx, Db *pDb, Pager *pPager, sqlite3_file *fd, const void *zKey, int nKey) {
int rc;
codec_ctx *ctx;
CODEC_TRACE("sqlcipher_codec_ctx_init: allocating context\n");
*iCtx = sqlcipher_malloc(sizeof(codec_ctx));
ctx = *iCtx;
if(ctx == NULL) return SQLITE_NOMEM;
ctx->pBt = pDb->pBt; /* assign pointer to database btree structure */
/* allocate space for salt data. Then read the first 16 bytes
directly off the database file. This is the salt for the
key derivation function. If we get a short read allocate
a new random salt value */
CODEC_TRACE("sqlcipher_codec_ctx_init: allocating kdf_salt\n");
ctx->kdf_salt_sz = FILE_HEADER_SZ;
ctx->kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz);
if(ctx->kdf_salt == NULL) return SQLITE_NOMEM;
/* allocate space for separate hmac salt data. We want the
HMAC derivation salt to be different than the encryption
key derivation salt */
CODEC_TRACE("sqlcipher_codec_ctx_init: allocating hmac_kdf_salt\n");
ctx->hmac_kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz);
if(ctx->hmac_kdf_salt == NULL) return SQLITE_NOMEM;
/* setup default flags */
ctx->flags = default_flags;
/* read salt from header, if present */
CODEC_TRACE("sqlcipher_codec_ctx_init: reading file header\n");
if(fd == NULL || sqlite3OsRead(fd, ctx->kdf_salt, ctx->kdf_salt_sz, 0) != SQLITE_OK) {
ctx->need_kdf_salt = 1;
}
/* setup the crypto provider */
CODEC_TRACE("sqlcipher_codec_ctx_init: allocating provider\n");
ctx->provider = (sqlcipher_provider *) sqlcipher_malloc(sizeof(sqlcipher_provider));
if(ctx->provider == NULL) return SQLITE_NOMEM;
/* make a copy of the provider to be used for the duration of the context */
CODEC_TRACE_MUTEX("sqlcipher_codec_ctx_init: entering sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlite3_mutex_enter(sqlcipher_provider_mutex);
CODEC_TRACE_MUTEX("sqlcipher_codec_ctx_init: entered sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
memcpy(ctx->provider, default_provider, sizeof(sqlcipher_provider));
CODEC_TRACE_MUTEX("sqlcipher_codec_ctx_init: leaving sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
sqlite3_mutex_leave(sqlcipher_provider_mutex);
CODEC_TRACE_MUTEX("sqlcipher_codec_ctx_init: left sqlcipher provider mutex %p\n", sqlcipher_provider_mutex);
CODEC_TRACE("sqlcipher_codec_ctx_init: calling provider ctx_init\n");
if((rc = ctx->provider->ctx_init(&ctx->provider_ctx)) != SQLITE_OK) return rc;
ctx->key_sz = ctx->provider->get_key_sz(ctx->provider_ctx);
ctx->iv_sz = ctx->provider->get_iv_sz(ctx->provider_ctx);
ctx->block_sz = ctx->provider->get_block_sz(ctx->provider_ctx);
/* establic the size for a hex-formated key specification, containing the
raw encryption key and the salt used to generate it format. will be x'hexkey...hexsalt'
so oversize by 3 bytes */
ctx->keyspec_sz = ((ctx->key_sz + ctx->kdf_salt_sz) * 2) + 3;
/*
Always overwrite page size and set to the default because the first page of the database
in encrypted and thus sqlite can't effectively determine the pagesize. this causes an issue in
cases where bytes 16 & 17 of the page header are a power of 2 as reported by John Lehman
*/
CODEC_TRACE("sqlcipher_codec_ctx_init: calling sqlcipher_codec_ctx_set_pagesize with %d\n", default_page_size);
if((rc = sqlcipher_codec_ctx_set_pagesize(ctx, default_page_size)) != SQLITE_OK) return rc;
/* establish settings for the KDF iterations and fast (HMAC) KDF iterations */
CODEC_TRACE("sqlcipher_codec_ctx_init: setting default_kdf_iter\n");
if((rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, default_kdf_iter)) != SQLITE_OK) return rc;
CODEC_TRACE("sqlcipher_codec_ctx_init: setting fast_kdf_iter\n");
if((rc = sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, FAST_PBKDF2_ITER)) != SQLITE_OK) return rc;
/* set the default HMAC and KDF algorithms which will determine the reserve size */
CODEC_TRACE("sqlcipher_codec_ctx_init: calling sqlcipher_codec_ctx_set_hmac_algorithm with %d\n", default_hmac_algorithm);
if((rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, default_hmac_algorithm)) != SQLITE_OK) return rc;
/* Note that use_hmac is a special case that requires recalculation of page size
so we call set_use_hmac to perform setup */
CODEC_TRACE("sqlcipher_codec_ctx_init: setting use_hmac\n");
if((rc = sqlcipher_codec_ctx_set_use_hmac(ctx, default_flags & CIPHER_FLAG_HMAC)) != SQLITE_OK) return rc;
CODEC_TRACE("sqlcipher_codec_ctx_init: calling sqlcipher_codec_ctx_set_kdf_algorithm with %d\n", default_kdf_algorithm);
if((rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, default_kdf_algorithm)) != SQLITE_OK) return rc;
/* setup the default plaintext header size */
CODEC_TRACE("sqlcipher_codec_ctx_init: calling sqlcipher_codec_ctx_set_plaintext_header_size with %d\n", default_plaintext_header_sz);
if((rc = sqlcipher_codec_ctx_set_plaintext_header_size(ctx, default_plaintext_header_sz)) != SQLITE_OK) return rc;
/* initialize the read and write sub-contexts. this must happen after key_sz is established */
CODEC_TRACE("sqlcipher_codec_ctx_init: initializing read_ctx\n");
if((rc = sqlcipher_cipher_ctx_init(ctx, &ctx->read_ctx)) != SQLITE_OK) return rc;
CODEC_TRACE("sqlcipher_codec_ctx_init: initializing write_ctx\n");
if((rc = sqlcipher_cipher_ctx_init(ctx, &ctx->write_ctx)) != SQLITE_OK) return rc;
/* set the key material on one of the sub cipher contexts and sync them up */
CODEC_TRACE("sqlcipher_codec_ctx_init: setting pass key\n");
if((rc = sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, 0)) != SQLITE_OK) return rc;
CODEC_TRACE("sqlcipher_codec_ctx_init: copying write_ctx to read_ctx\n");
if((rc = sqlcipher_cipher_ctx_copy(ctx, ctx->write_ctx, ctx->read_ctx)) != SQLITE_OK) return rc;
return SQLITE_OK;
}
/**
* Free and wipe memory associated with a cipher_ctx, including the allocated
* read_ctx and write_ctx.
*/
void sqlcipher_codec_ctx_free(codec_ctx **iCtx) {
codec_ctx *ctx = *iCtx;
CODEC_TRACE("codec_ctx_free: entered iCtx=%p\n", iCtx);
sqlcipher_free(ctx->kdf_salt, ctx->kdf_salt_sz);
sqlcipher_free(ctx->hmac_kdf_salt, ctx->kdf_salt_sz);
sqlcipher_free(ctx->buffer, 0);
ctx->provider->ctx_free(&ctx->provider_ctx);
sqlcipher_free(ctx->provider, sizeof(sqlcipher_provider));
sqlcipher_cipher_ctx_free(ctx, &ctx->read_ctx);
sqlcipher_cipher_ctx_free(ctx, &ctx->write_ctx);
sqlcipher_free(ctx, sizeof(codec_ctx));
}
/** convert a 32bit unsigned integer to little endian byte ordering */
static void sqlcipher_put4byte_le(unsigned char *p, u32 v) {
p[0] = (u8)v;
p[1] = (u8)(v>>8);
p[2] = (u8)(v>>16);
p[3] = (u8)(v>>24);
}
static int sqlcipher_page_hmac(codec_ctx *ctx, cipher_ctx *c_ctx, Pgno pgno, unsigned char *in, int in_sz, unsigned char *out) {
unsigned char pgno_raw[sizeof(pgno)];
/* we may convert page number to consistent representation before calculating MAC for
compatibility across big-endian and little-endian platforms.
Note: The public release of sqlcipher 2.0.0 to 2.0.6 had a bug where the bytes of pgno
were used directly in the MAC. SQLCipher convert's to little endian by default to preserve
backwards compatibility on the most popular platforms, but can optionally be configured
to use either big endian or native byte ordering via pragma. */
if(ctx->flags & CIPHER_FLAG_LE_PGNO) { /* compute hmac using little endian pgno*/
sqlcipher_put4byte_le(pgno_raw, pgno);
} else if(ctx->flags & CIPHER_FLAG_BE_PGNO) { /* compute hmac using big endian pgno */
sqlite3Put4byte(pgno_raw, pgno); /* sqlite3Put4byte converts 32bit uint to big endian */
} else { /* use native byte ordering */
memcpy(pgno_raw, &pgno, sizeof(pgno));
}
/* include the encrypted page data, initialization vector, and page number in HMAC. This will
prevent both tampering with the ciphertext, manipulation of the IV, or resequencing otherwise
valid pages out of order in a database */
return ctx->provider->hmac(
ctx->provider_ctx, ctx->hmac_algorithm, c_ctx->hmac_key,
ctx->key_sz, in,
in_sz, (unsigned char*) &pgno_raw,
sizeof(pgno), out);
}
/*
* ctx - codec context
* pgno - page number in database
* size - size in bytes of input and output buffers
* mode - 1 to encrypt, 0 to decrypt
* in - pointer to input bytes
* out - pouter to output bytes
*/
int sqlcipher_page_cipher(codec_ctx *ctx, int for_ctx, Pgno pgno, int mode, int page_sz, unsigned char *in, unsigned char *out) {
cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
unsigned char *iv_in, *iv_out, *hmac_in, *hmac_out, *out_start;
int size;
/* calculate some required positions into various buffers */
size = page_sz - ctx->reserve_sz; /* adjust size to useable size and memset reserve at end of page */