forked from uwsampl/sparsetir-artifact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_data.py
34 lines (30 loc) · 1.33 KB
/
extract_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
def extract_data():
with open("graphsage-e2e.dat", "w") as fout:
fout.write("Dataset PyTorch+SparseTIR-SpMM\n")
datasets = ["cora", "citeseer", "pubmed", "ppi", "arxiv", "reddit"]
display_names = ["Cora", "Citeseer", "Pubmed", "PPI", "ogbn-arxiv", "Reddit"]
for display_name, dataset in zip(display_names, datasets):
with open("dgl_{}.log".format(dataset), "r") as f:
lines = f.readlines()
if len(lines) > 0:
last_line = lines[-1].split()
if last_line[-1] == "ms/epoch":
dgl_time = float(last_line[-2])
else:
dgl_time = 0
else:
dgl_time = 0
with open("sparsetir_{}.log".format(dataset), "r") as f:
lines = f.readlines()
if len(lines) > 0:
last_line = lines[-1].split()
if last_line[-1] == "ms/epoch":
sparsetir_time = float(lines[-1].split()[-2])
else:
sparsetir_time = 1e9
else:
sparsetir_time = 1e9
fout.write("{} {}\n".format(display_name, dgl_time / sparsetir_time))
if __name__ == "__main__":
extract_data()