-
Notifications
You must be signed in to change notification settings - Fork 560
/
Copy pathopencv_tensor.cc
143 lines (115 loc) · 4.27 KB
/
opencv_tensor.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*
Following file take opencv mat file as an input and convert it to proper
tensor object Created by : Kumar Shubham Date : 27-03-2016
*/
// Loading Opencv fIles for processing
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <string>
#include <iostream>
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/framework/tensor.h"
#include <fstream>
int main(int argc, char **argv)
{
// Loading the file path provided in the arg into a mat objects
std::string path = argv[1];
cv::Mat readImage = cv::imread(path);
std::cerr << "read image=" << path << std::endl;
// converting the image to the necessary dim and for normalization
int height = 299;
int width = 299;
int mean = 128;
int std = 128;
cv::Size s(height, width);
cv::Mat Image;
std::cerr << "resizing\n";
cv::resize(readImage, Image, s, 0, 0, cv::INTER_CUBIC);
std::cerr << "success resizing\n";
int depth = Image.channels();
// std::cerr << "height=" << height << " / width=" << width << " / depth=" <<
// depth << std::endl;
// creating a Tensor for storing the data
tensorflow::Tensor input_tensor(
tensorflow::DT_FLOAT,
tensorflow::TensorShape({ 1, height, width, depth }));
auto input_tensor_mapped = input_tensor.tensor<float, 4>();
cv::Mat Image2;
Image.convertTo(Image2, CV_32FC1);
Image = Image2;
Image = Image - mean;
Image = Image / std;
const float *source_data = (float *)Image.data;
// copying the data into the corresponding tensor
for (int y = 0; y < height; ++y)
{
const float *source_row = source_data + (y * width * depth);
for (int x = 0; x < width; ++x)
{
const float *source_pixel = source_row + (x * depth);
for (int c = 0; c < depth; ++c)
{
const float *source_value = source_pixel + c;
input_tensor_mapped(0, y, x, c) = *source_value;
}
}
}
// initializing the graph
tensorflow::GraphDef graph_def;
// Name of the folder in which inception graph is present
std::string graphFile = "../../model/tensorflow_inception_graph.pb";
// Loading the graph to the given variable
tensorflow::Status graphLoadedStatus
= ReadBinaryProto(tensorflow::Env::Default(), graphFile, &graph_def);
if (!graphLoadedStatus.ok())
{
std::cout << graphLoadedStatus.ToString() << std::endl;
return 1;
}
// creating a session with the grap
std::unique_ptr<tensorflow::Session> session_inception(
tensorflow::NewSession(tensorflow::SessionOptions()));
// session->reset(tensorflow::NewSession(tensorflow::SessionOptions()));
tensorflow::Status session_create_status
= session_inception->Create(graph_def);
if (!session_create_status.ok())
{
return 1;
}
// running the loaded graph
std::vector<tensorflow::Tensor> finalOutput;
std::string InputName = "Mul";
std::string OutputName = "softmax";
tensorflow::Status run_status = session_inception->Run(
{ { InputName, input_tensor } }, { OutputName }, {}, &finalOutput);
// finding the labels for prediction
std::cerr << "final output size=" << finalOutput.size() << std::endl;
tensorflow::Tensor output = std::move(finalOutput.at(0));
auto scores = output.flat<float>();
std::cerr << "scores size=" << scores.size() << std::endl;
// Label File Name
std::string labelfile = "../../model/imagenet_comp_graph_label_strings.txt";
std::ifstream label(labelfile);
std::string line;
// sorting the file to find the top labels
std::vector<std::pair<float, std::string>> sorted;
for (unsigned int i = 0; i <= 1000; ++i)
{
std::getline(label, line);
sorted.emplace_back(scores(i), line);
// std::cout << scores(i) << " / line=" << line << std::endl;
}
std::sort(sorted.begin(), sorted.end());
std::reverse(sorted.begin(), sorted.end());
std::cout << "size of the sorted file is " << sorted.size() << std::endl;
for (unsigned int i = 0; i < 5; ++i)
{
std::cout << "The output of the current graph has category "
<< sorted[i].second << " with probability " << sorted[i].first
<< std::endl;
}
/*cv::namedWindow("imageOpencv",CV_WINDOW_KEEPRATIO);
cv::imshow("imgOpencv",Image);
*/
}